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Abstract

A new technique is presented for mosaicing sparsely-
overlapping image sets, with a target application of assist-
ing the diagnosis and treatment of retinal diseases. The geo-
metric image transformations required to construct the mo-
saics are estimated by (1) estimating the transformations
between as many pairs of images as possible, (2) extract-
ing sets of constraints (correspondences) from the success-
fully registered image pairs, and (3) using these constraint
sets to simultaneously (jointly) estimate the final transfor-
mations. Unfortunately, this may not be sufficient to con-
struct seamless mosaics when two images overlap but can
not be successfully registered (step 1). This paper presents
a new method to generate constraints between such image
pairs, and use these constraints to estimate a more consis-
tent set of transformations. For each pair, transformation
parameter covariance matrices are computed and used to
estimate the mapping error covariance matrices for individ-
ual features from one image. These features are matched in
the second image by minimizing the resulting Mahalanobis
distance. The generated correspondences are validated us-
ing robust estimation techniques and used to refine the es-
timates. The steps of covariance computation, matching,
and transform estimation are repeated for all relevant im-
age pairs until the final alignment converges. Results are
presented and evaluated for several difficult image sets to
illustrate the efficacy of the techniques.

1. Introduction
This paper addresses the problem of forming an image mo-
saic when the image set is sparse and the inter-image over-
lap can be quite low. The problem arises in the context
of imaging the human retina (Figure 1). Mosaics must be
constructed to build complete, non-redundant views of the
retina as an aid to diagnosing a variety of blindness-causing
diseases such as diabetic retinopathy and age-related macu-
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lar degeneration. These diseases affect a large and growing
percentage of the population, yet early detection and treat-
ment, especially of diabetic retinopathy, can significantly
improve long-term visual health [7]. For a variety of rea-
sons, including cost, patient comfort and patient volume,
images of the retina, acquired using a fundus camera, must
be taken as quickly as possible and with as few shots as
possible [6]. Combining this requirement with the need for
a wide field of view in the constructed mosaic shows the
importance of handling low overlaps between images.

The mosaicing problem has received a significant
amount of attention both in the computer vision literature
[2, 9, 12, 15, 16] and the ophthalmology literature [5, 19].
The most advanced techniques have focused on mosaicing
video sequences, where the overlap between images tends
to be relatively high. Some techniques have addressed the
question of low image overlap, using the global inferenc-
ing of topological relationship between images to generate
additional inter-image constraints [14].

The major steps of mosaic construction include register-
ing pairs of image, extracting constraints from the registered
pairs, and jointly estimating the transformations aligning all
images using the extracted constraints. (A final step of con-
structing the actual mosaic by transforming and blending
the images is not discussed here.) Let{I0, . . . , IN} be a set
of images, and letA be an algorithm for registering pairs of
images. We assumeA(Ii, Ij) produces two types of output
if it successfully alignsIi to Ij : Θ̂i,j is the set of estimated
transformation parameter values, andCi,j is a set of inter-
image constraints — corresponding points. For simplicity
in this discussion, we assumeA is applied to all possible
image pairs. The result can be viewed as a connectivity /
topology graph: each image forms a vertex, and an edge
is formed between verticesi andj whenA(Ii, Ij) is suc-
cessful (Figure 1). The final step, which we will call the
“joint alignment” step, is to simultaneously estimate the fi-
nal transformations using all the constraint setsCi,j [3, 16].

This technique will produce a final set of transformations
for all images if the topology graph is connected. This does
not ensure accurate alignment, however, especially when

1



Figure 1: Building a mosaic of retinal images. The top
shows a graph of retina images with edges between vertices
if the associated images could be aligned via pairwise reg-
istration. Notice that image 4 and image 5 overlap (initial
overlap 5.8%) but are not adjacent in the graph. This leads
to inaccuracies in the mosaic (bottom), highlighted by the
rectangular area. Figure 2 shows the rectangular region in
more detail and illustrates the solution to the misalignment
problem.

the graph is sparsely connected and there is relatively little
overlap between some images. Two images, such asI4 and
I5 of Figure 1, may overlap without there being enough in-
formation for pairwise registration to succeed. Constraints

on the transformations from nearby images may not be
enough to force consistency between these images during
joint alignment. The result can be clear misregistration.1

The key problem addressed in this paper is how to gen-
erate additional constraints, beyond the results of pairwise
registration, in order to avoid misregistrations in the fi-
nal, joint alignment. Sometimes the misalignment may
be small, which would allow a technique like incremental
block matching [16] to succeed. At other times, the mis-
alignment may be much greater. We handle this by using
the alignment uncertainty to drive the generation of addi-
tional constraints. The covariance matrices of the trans-
formation parameters estimated in the joint alignment are
computed — even for transformations between image pairs
that did not register pairwise. These are used to compute
error covariances on the inter-image mapping of feature
points, which guides the search for new correspondences.
These correspondences are used in turn to refine the joint
estimate. The effect of these techniques is illustrated in
Figure 2. In short, we are using transformation parameter
covariances to drive the generation of constraints between
images even when pairwise registration fails. These addi-
tional constraints are not enough to make pairwise registra-
tion succeed, but they are enough to improve the results of
joint alignment and eliminate most misregistrations in the
final mosaic.

2. Background
In this paper, the pairwise registration algorithmA is treated
as a black box. The actual algorithm [17] works automat-
ically, either producing an accurate alignment between im-
age pairs, or indicating that they can not be aligned. Experi-
mental validation on an extensive data set has shown in [18]
that this pairwise registration algorithm doesNOTproduces
any incorrect alignment.

In the retina application, the alignment of two-
dimensional images uses a 12-parameter quadratic trans-
formation model [4, 17]. Given two images,Im and In,
let p = (x, y)T be a pixel location inIm, and p′ =
(x′, y′)T be the transformed location inIn. DefineX(p) =
(x2, xy, y2, x, y, 1)T . Then the transformation ofp ontop′

is
p′ = T(p;Θm,n) = Θm,nX(p), (1)

whereΘm,n is a 2 × 6 parameter matrix.2 This model is
accurate to less than a pixel on1024× 1024 retinal images.

The pairwise algorithm generates constraints based on
the location of blood vessel landmarks — branching and

1We stress that the problem isnot with pairwise registration. There
aren’t sufficient constraints in the images shown in Figure 1 for estimation
of the 12-parameter transformation necessary to align retinal images.

2Abusing notation for the sake of convenience, in other contexts we
may interpretΘm,n as a12× 1 parameter vector as well.
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Figure 2: Three iterations of the covariance-driven process
of adding constraints and refining the transformation esti-
mates, shown for the rectangular region highlighted in Fig-
ure 1. The left column shows the centerline points ofI5

(solid segments) mapped ontoI4 and its centerline points
(dotted segments). The misalignment at the top of the re-
gion is most prominent, especially in the first iteration.
The second column shows sampled transfer error covari-
ance matrices and their eigenvectors (scaled in proportion
to their eigenvalues). The third column shows new gener-
ated correspondences. Clearly, as the iterations proceed, the
alignment, the covariance matrices and the matching error
improve dramatically.

cross-over points of the retinal vasculature — and, more im-
portantly, points along the centerlines of the vasculature [4].
Vessels are used because they are prominent, static and eas-

ily detectable. (The appearance of the non-vascular back-
ground tends to vary with illumination, and background
structures such as waste deposits and pathologies tend to
change over time.) The centerline points are discrete sam-
ples along fairly straight contours, so that precisely match-
ing and aligning them is unrealistic (the aperture problem
for registration). Instead, the constraints for registration are
alignment of a centerline point from one image with a linear
approximation to the centerline contour in the other. Alge-
braically, if pm,i is a centerline point location in imageIm

and if pn,j is a centerline point location in imageIn with
local contour normal̂ηn,j , then the “normal distance” error
of the transformation is

(Θm,nX(pm,i)− pn,j)T η̂n,j . (2)

This measures the signed distance of the mapping ofpm,i

to the line throughpn,j with normalη̂n,j .
Based on this discussion, we can now define the corre-

spondence sets that emerge from pairwise registration. The
set of image pairs for whichA succeeds isP = {(m,n)}.
Here, order matters because pairwise registration may in
rare cases succeed fromIm to In, but not vice-versa. For
each(m,n) ∈ P, the constraint set is

Cm,n = {(pm,i, η̂m,i;pn,j , η̂n,j)}. (3)

Finally, each constraint in each constraint set has a weight
associated with it,wm,n;i,j , computed using robust M-
estimator weighting. It is important to note that this weight
is the usual robust weight multiplied by1/σ2

m,n, where
σ2

m,n is the robustly computed variance of the pairwise
alignment error betweenIm and In. This normalizes the
weights appropriately for different image pairs.

3. Joint Alignment
The first consideration in developing our technique is to
present the joint alignment estimation equations. By spe-
cially designating one imageI0 as the “anchor image” on
which to construct the mosaic (e.g.I4 in Figure 1), our
goal is to estimate the transformationsΘ1,0, . . . ,ΘN−1,0

of the remainingN − 1 images onto this anchor using the
set of constraint sets{Cm,n}. This generatesN − 1 of the
N(N −1) interimage transformations. We can choose each
of the other images as the anchor in turn in order to estimate
the remaining interimage transformations. This capability is
important to the constraint generation procedure described
below.

For a designated anchor, we divide the set of image
pairs P in two: PD = {(m, 0) | (m, 0) ∈ P} and
PI = {(m,n) | m 6= 0, n 6= 0, (m,n) ∈ P}. In words,PD

is the set of pairs involving the anchor directly (“direct con-
straints”), whilePI is the set of pairs that do not involve the



anchor image (“indirect constraints”). These two constraint
sets are treated separately in the joint alignment.

We have two choices in computing the joint alignment.
The first, used in our previous work in matching vascular
landmarks [3], ignores the normal directions in order to de-
fine a least-squares error norm based on Euclidean feature-
point distances:

E(Θ1,0, . . . ,ΘN,0) =∑
(m,0)∈PD

∑
(i,j)∈Cm,0

wm,0;i,j‖Θm,0X(pm,i)− p0,j‖2

+
∑

(m,n)∈PI

∑
(i,j)∈Cm,n

wm,n;i,j‖Θm,0X(pm,i)−Θn,0X(pn,j)‖2.

(4)

The first term measures errors against feature locations in
the anchor image, while the second term measures incon-
sistencies in the mapping of corresponding, but non-anchor
features. This is quadratic in the transformation parameters
and therefore can be solved non-iteratively.

The second choice, introduced here, defines a weighted
least-squares error norm based on normal distances:

Eη̂(Θ1,0, . . . ,ΘN,0) =∑
(m,0)∈PD

∑
(i,j)∈Cm,0

wm,0;i,j [(Θm,0X(pm,i)− p0,j)T η̂0,j ]
2

+
∑

(m,n)∈PI

∑
(i,j)∈Cm,n

wm,n;i,j [(Θm,0X(pm,i)−Θn,0X(pn,j))T η̂′n,j ]
2.

(5)

The issue here is that the transformation of each centerline
point normal direction,̂η′n,j , depends on the transformation
parameters. Thus, we no longer have a quadratic estimation
problem and must resort to an iterative technique. We ini-
tialize the parameters using Euclidean distances as in (4).
Then we alternate (a) estimating the normals using the Ja-
cobian of the transformations and (b) re-computing the esti-
mates using (5) and fixed normals. This converges quickly.

The algorithm in Can et al. [3] stops at this point. The
new technique described in this paper then generates covari-
ance matrices of all transformation parameter estimates and
uses them to guide the generation of new constraints.

3.1. Covariance Matrices
The last step of our joint alignment estimation algorithm for
a fixed set of constraints is to compute the covariance matrix
of the estimated parameters. We can obtain an approximate
covariance by inverting the Hessian matrix of (5) evaluated
at the estimate [13, Ch. 15] [11, Ch. 7]:

ΣΘ = H−1(Eη̂(Θ̂)). (6)

Normally, this would be multiplied by the variance of the
alignment errors, but these values are already factored into
the robust weights used in (5). The result is a12N × 12N
matrix. It can be shown that the individual covariance ma-
tricesΣi,0 are obtained by simply extracting the appropriate
12× 12 subblock.

Obtaining this covariance matrix is the major reason why
the more complicated objective function in (5) is used in-
stead of (4): it gives a more reliable indication of the uncer-
tainty. To demonstrate this intuitively, consider for example
the alignment of two images with two parallel lines each,
and a fixed set of correspondences along these lines. Using
the Euclidean distance in (4), a shift of the transformation
along the lines would increase the error proportionally, even
though the lines themselves would still be registered. Thus,
the transformation would appear much more stable that it
truly is. Using (5) would correctly make this transforma-
tion appear unstable. This is crucial for correctly guiding
the matching process.

4. Generating New Constraints
Our next step, and the most important innovation of the pa-
per, is to use the joint alignment transformation estimates
and covariance matrices to generate new correspondences.
In doing so, we consider any pair of imagesIm andIn that
overlap (based on the joint alignment) or nearly overlap and
that were not aligned successfully by the pairwise registra-
tion algorithm. These image pairs generally have low over-
lap — in practice overlap is always lower than 35% of the
image area and is generally much lower. We do not consider
adding constraints for the image pairs that were aligned by
pairwise registration because the pairwise constraints are al-
ways sufficient for accurate results in the joint alignment
step.

Once the unregistered pairs are identified, each pair is
tested in turn for the generation of new constraints. To sim-
plify the process, pair(m,n) is only tested whenIn is the
anchor image, i.e.n = 0. All pairs are eventually consid-
ered by varying the choice of anchor image. It is important
to note that we obtain a covariance matrix for the mapping
of Im ontoI0 even though there is no pairwise result. This
covariance depends on indirect constraints (see Equation 5).

We infer new constraints relative to the anchor, itera-
tively switching which image is chosen as the anchor, but
always using all constraints in refinement. For pair(m, 0),
the following steps are repeated until the estimate converges

1. Initialize an empty constraint setCm,0.

2. Identify the centerline points in both images that fall in
or near the apparent overlap region based on the trans-
formation estimatêΘm,0. Denote these asPm andP0,
respectively (suppressing the dependence of each set
on the other image in the notation).



3. For each centerline pointpm,i ∈ Pm:

(a) Mappm,i ontoI0 to compute location

p̂′m,i = Θ̂m,0X(pm,i)

(b) Compute the uncertainty covariance matrix of
this mappingΣp̂′

m,i
(Figure 2).

(c) Find the centerline pointp0,j from I0 minimiz-
ing the square Mahalanobis distance to this trans-
formed location. In particular,

p0,j = argmin
p∈P0

(p̂′m,i − p)T Σ−1
p̂′

m,i
(p̂′m,i − p)

(7)

(d) Add the constraint(pm,i, η̂m,i;p0,j , η̂0,j) to the
constraint setCm,0 (Figure 2).

4. Estimate the transformation error scaleσm,0 and com-
pute the weightswm,i;0;j for the new correspondence
set.

5. Temporarily add the image pair(m, 0) to the set
of direct constraint pairs,PD, and re-estimate the
joint alignment transformations and covariances as de-
scribed in Section 3 using all direct and indirect con-
straint sets.

After convergence, a test is made to verify the consistency
of the final constraint setCm,0. If it passes, image pair
(m, 0) is added to the set of image pairs,P, andCm,0 is
retained. Thus, constraints between imagesIm andI0 are
added, even though pairwise registration did not succeed.

The rest of this section describes a few of the steps in
more detail.

4.1. Mapping Error and Matching
The uncertainty in point location mapping is computed from
the covariance of the transformation parameter estimate.
This uses the forward transfer error [8, Ch. 4]. The mapped
point p̂′m,i = Θ̂m,iX(pm,i) is a random variable because it
relies on the transformation, which is also a random variable
3 Its covariance matrix can be approximated fromΣ ˆΘm,0

and the Jacobian,J, of the transformation evaluated atpm,i:

Σp̂′
m,i

= JΣm,0JT (8)

Examples of these transfer error covariance matrices are
shown in Figure 1. Notice how these change spatially and,
as expected, have their major uncertainty axis along the ves-
sel directions.

3For simplicity, we do not treatpm,i as a random variable because
feature location error is generally much small than errors in the transfor-
mation.

When searching for the correspondence, minimizing the
Mahalanobis distance for mapped pointp̂′m,i is more chal-
lenging than minimizing Euclidean distance. This mini-
mization is accomplished in two steps. First, with the cen-
terline points organized into a spatial data structure, our al-
gorithm first gathers all possibleI0 centerline points in a
square region surroundinĝp′m,i whose width is determined
by the maximum eigenvalue ofΣp̂′

m,i
. Second, the corre-

spondence is found by exhaustively searching this (gener-
ally small) set for the centerline point minimizing the Ma-
halanobis distance.

4.2. Scale Estimation and Weight Calculation
Denote byr2

m,0;i,j the square Mahalanobis distance be-

tweenp̂′m,i = Θ̂m,0X(pm,i) and its matching pointp0,j .
Prior to re-estimating the joint alignment, we use the set of
these distances to robustly estimate scale and to weight each
individual correspondence. The scale,σm,0, is computed
using a technique that automatically estimates and adjusts
for the fraction of inliers [10]. The weights are computed
using standard M-estimator weighting, multiplied as above
by the inverse variance:

wm,0;i,j =
1

σ2
m,0

ρ′(rm,0;i,j/σm,0)
rm,0;i,j/σm,0

. (9)

The Beaton-Tukey biweight function is used asρ [1].

4.3. Verification of Constraint Sets
After the iterations of match generation, weight calculation,
and transformation re-estimation have converged, the con-
straint set must still be validated. This decides if image pair
(m, 0) will be added to the constraint set. The test is sim-
ple. For each generated match, letdm,i;0,j be the normal
distance, computed as in Equation 2. Compute the weighted
average of these distances:

em,0 =
∑

wm,0;i,j |dm,0;i,j | /
∑

wm,0;i,j .

We call this measure the “Centerline Error Measure” or
CEM. The constraint set is verified and retained perma-
nently if em,0 is lower than a threshold, empirically deter-
mined in previous work to be 1.5 pixels. CEM, with the
same threshold, is used to verify pairwise matching results.
Thus, covariances and the Mahalanobis distance are used to
“pull in” new correspondences for unregistered image pairs,
but the final verification is as stringent as in pairwise regis-
tration.

5. Experiments
We have applied this technique to image sets taken from a
large patient database of retinal images. We selected a few



Set images pairs successes failures Max
overlap

1 5 3 1 2 0.4%
2 8 5 3 2 2.8%
3 8 8 6 2 17.8%
4 9 4 2 2 1.1%

Table 1: Summary of the success rate for 4 image data sets.
The column labeled “images” indicates the number of im-
age used in the test. The column labeled “pairs” indicates
the number of pairs that overlap but do not have a pairwise
registration result; these are candidates for the addition of
constraints. The column labeled “successes” indicates the
number of pairs for which a constraint set was generated
and verified. The column labeled “failures” indicates the
number of failed pairs. Finally, the last column indicates
the fraction of image overlap of the failed pairs.

to present here to illustrate the algorithm. In some cases,
we’ve chosen a subset of the data sets to obtain a sparser
set of image. In other cases, such as shown in Figure 3, the
original image set has sparse overlap on the periphery of
the retina. (Here we only show images from above and to
the right of the optic disk.) These are representative of the
images being acquired with newer imaging systems.

We can evaluate the results in several ways. The first is
a simple visual evaluation of the mosaics constructed with
and without the application of the new technique. This is
perhaps the most important, but also the most subjective
measure. Doing this (see for example Figures 2 and 3),
show clear cases of misalignment before application of the
new technique and none afterwards.

The other two ways of evaluating the results are numeri-
cal. Table 1 presents statistics on the successes and failures
of the algorithm. These are evaluated for pairs that overlap
but are not aligned by the pairwise algorithm. A success
is declared if constraints are generated and verified by the
new technique. A failure is declared otherwise. Combining
the raw numbers, the algorithm has a 60% success rate on
this preliminary test set. One of the eight failures has an
image pair overlap of 17.8% of the image area, but examin-
ing these images shows no common constraints in the area
of overlap. All of the other seven failures have image over-
laps less than 3% of the image area. These clearly cause no
significant misalignment in the mosaics.

The final numerical evaluation is to study the centerline
error measure (CEM). Table 2 shows two important results.
First, as expected, the CEM for previously unaligned image
pairs improves substantially. Second, the CEM for previ-
ously aligned image pairs does not increase significantly. In
other words, the addition of the new constraints corrects the
bad results without biasing the previously good results.

Overall, these experiments have shown the efficacy of

set Pair Others
before after before after

1 5.48 0.93 0.69 0.71
2 1.92 1.30 0.83 0.83
3 1.16 1.10 0.97 0.97
4 0.82 0.48 0.58 0.58

Table 2: Effect of the addition of constraints on the average
error in alignment (CEM). The second and third columns
show the average CEM before and after application of
the new technique for unregistered, but overlapping image
pairs. The fourth and fifth columns show the average CEM
before and after for registered image pairs. A table of the
maximum CEM shows similar trends, although the errors
are obviously somewhat higher.

our new techniques both visually and numerically.

6. Summary and Conclusions
We have presented a technique that constructs mosaics
of sparsely-overlapping image sets, and demonstrated this
technique on retinal fundus image sets. The primary tech-
nical contribution of this paper is the use of uncertainty
to drive the formation of new matching constraints be-
tween unregistered image pairs in the context of multi-
image alignment. This is particularly important for low
overlap images and images with sparse feature sets such as
the blood vessels of retinal images. We have shown that
this technique corrects misalignments in sparsely overlap-
ping image sets without sacrificing overall accuracy.

From the applications perspective this technique is cru-
cial for moving retinal image registration and mosaicing
techniques out of the laboratory and into the clinic. Mo-
saics for most image data sets can be constructed seamlessly
without using the new techniques; a few can not. These
few, however, can ruin the utility of a system. By adding
the diagnostic and refinement capabilities of the covariance-
driven techniques described here, we have developed a reli-
able, autonomous retinal image registration and mosaicing
system.
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Figure 3: A subset of a 30-field image set illustrating mis-
alignment before application of the new covariance-driven
constraint-generation technique (top) and correction after-
wards (bottom). The image sections shown in the center
show regions of misalignment (left) and their correction
(right) using the new technique.


