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Abstract 

I n  extracting a polynomial surface patch near- an in- 
tensity or range discontinuity, a robust estimator must 
tolerate not only the truly random bad data (“random 
outliers”), but also the coherently structured points 
((bseudo outliers”) that belong to a different surface. 
To characterize the performance of least median of 
squares, M-estimators, Hough transforms, RANSAC,  
and MINPRAN on data containing both random and 
pseudo outliers, we develop two analytical measures, 
‘(pseudo outlier bias” and ‘$pseudo outlier breakdown”. 
Using these measures, we find that each robust estima- 
tor has surprisingly poor performance, even under the 
best possible circumstances, implying that present es- 
timators should be used with care and new estimators 
should be developed. 

1 Introduction 

In computer vision applications, robust estimators 
must tolerate both random outliers and pseudo out- 
liers when fitting a polynomial surface patch in the 
neighborhood of a range or intensity discontinuity. 
Random outliers are bad measurements, which may 
arise from specularities, boundary effects, physical im- 
perfections in sensors, or low-level vision computation 
errors. Pseudo outliers are points belonging to a sec- 
ond surface, the surface on the other side of the dis- 
continuity. They differ from random outliers because 
they exhibit coherent structure. (As shown in Fig- 
ure 1, both random and pseudo outliers corrupt non- 
robust estimators, such as least-squares.) Although 
robust estimator performance is well-understood on 
data containing random outliers, their performance 
on data containing both random and pseudo outliers 
is not, and some preliminary experimental evidence 
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shows disappointing results [la]. Because discontinu- 
ities in vision data are common, we must understand 
robust estimator performance on data containing both 
types of outliers to  use them effectively. 

We introduce two new analytical performance mea- 
sures, “pseudo outlier bias” and “pseudo outlier break- 
down,” to  characterize robust estimators’ ability to 
extract surface patches near discontinuities. Working 
from models of the inliers (the points belonging to the 
desired surface), the pseudo outliers, and the random 
outliers, these measures calculate the data’s expected, 
ordered, absolute residuals relative to  a given fit, use 
these residuals to  calculate a representative value of 
the estimator’s optimization criterion for that fit (ap- 
proximating the criterion’s expected value for that fit), 
and then search for the fit, 6, with the optimum rep- 
resentative value. We define pseudo outlier bias as 
the distance between 8 and the expected fit to the 
inliers alone. If 6 “bridges” the inliers and pseudo 
outliers, thereby giving essentially the same result as 
ordinary least-squares (Figure lb) ,  we say that pseudo 
outlier breakdown occurs. (See [16] for the relation- 
ship between pseudo outlier breakdown and bias and 
the analysis techniques from robust statistics.) 

We use pseudo outlier breakdown and pseudo out- 
lier bias to study the performance of M-estimators [9, 
Chapter 71, least median of squares (LMS) [ll, 151, 
Hough transforms [lo], RANSAC [4], and MINPRAN 
[18, 171 in extracting polynomial surface patches from 
range data. We study three idealized pseudo outlier 
models: step edges, crease edges and parallel surfaces. 
Step edges model depth discontinuities, where points 
from the upper half of the step are pseudo outliers to 
the lower half. Crease edges model surface orienta- 
tion discontinuities, where points from one side of the 
crease are pseudo outliers to the other. Finally, par- 
allel surfaces model transparent or semi-transparent 
surfaces, where a background surface appears through 
breaks in the foreground surface, and data from the 
background are pseudo outliers to  the foreground. 
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Figure 1: Examples demonstrating the effects of (a) 
random outliers and (b) pseudo outliers on linear least- 
squares fits. 

2 Robust Techniques 

Restricting our attention to regression models, we 
begin by defining the robust estimators we analyze. 
Our analysis techniques, and therefore our presenta- 
tion, emphasize robust estimator optimization criteria 
and not search techniques. In describing the estima- 
tors, we assume the data are (Z i ,z i ) ,  where Zi is a 
vector of image coordinates and zi is a range value, 
and the fit is a function Q(2). 

2.1 M-Estimators / Fixed-Band Methods 

The optimization criteria of M-estimators of regres- 
sion [9, Chapter 71 is 

where 6 is an estimate of the true scale (noise) pa- 
rameter, 0,  and p ( ~ )  is a robust ‘iloss” function. M- 
estimators are categorized into three types [8] by the 
behavior of $ ( U )  = p’(u). We study one of each 
type. Monotone M-estimators (Figure 2a), such as 
Huber’s [9, Chapter 71, use non-decreasing, bounded 
$ ( U )  functions. Hard redescenders (Figure 2b), such 
as Hampel’s [5], force $ ( U )  = 0 for 1211 > c. Soft re- 
descenders (Figure 2c), such as Mirza and Boyer’s [2], 
force $ ( U )  -+ 0 as I Z L ~  -+ OD. The three robust loss 
functions shown in Figure 2 are, in order, 

Monotone Hard 

a 
- 

b 

Soft 
1 

I 

I 

c 

Figure 2: p(u),  top row, and $(U), bottom row, for 
three M-estimators. 

M-estimators typically minimize p(u i )  using re- 
weighting [8] or non-linear least-squares techniques [9, 
Chapter 71, but only monotone II, functions ensure a 
unique, global minimum. 

Although M-estimators must determine 8, com- 
puter vision applications often assume 8 is known or 
estimated separately. Thus, in our study, we will as- 
sume 6 is given and that 6 = 0. This gives the best 
possible robust estimator performance, since in the 
presence of pseudo outliers, scale estimators produce 
8 > (T, leading to  worse performance near discontinu- 
ities [16]. When 6 is fixed a priori, our M-estimators 
are no longer true M-estimators since they are not 
scale equivarzant [6, page 2591. To reflect this, we will 
refer to them as “fixed-scale M-estimators.” 

Hough transforms [lo] and RANSAC methods [4] 
(following [14] we call these “fixed-band” techniques) 
are special cases of fixed-scale M-estimators. Although 
typically viewed as attempting to  maximize the num- 
ber of fit inliers within a pre-specified inlier band, they 
may be viewed instead as minimizing the number of 
outliers.’ This gives a simple robust loss function 

( 5 )  

As an alternative to the usual binary voting scheme, 
some recent Hough techniques use weighted voting [7, 
131, making their optimization criteria a type of fixed- 
scale hard-redescending M-estimator (Figure 2b). 

‘Of course, they differ dramatically in their search tech- 
niques, and RANSAC may quit searching when a fit with 
“enough” inliers is found. The latter can result in extremely 
poor performance near discontinuities [16]. 
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2.2 Least Median of Squares 

Least median of squares (LMS), introduced by 
Rousseeuw (151, finds the fit minimizing the median of 
squared residuals. Its optimization criteria is, there- 
fore, 

min B { median[(zi - O(i?i))2]} . ( 6 )  

LMS is implemented using random sampling tech- 
niques. 

2.3 MINPRAN 

MINPRAN searches for the fit minimizing the prob- 
ability that a fit and a collection of inliers to the fit 
could be due to random outliers [HI. Assuming ran- 
dom outlier residuals are uniformly distributed2 with 
a maximum value of 20, for any given fit O(Z), the 
probability IC or more points could be within #(Z) f T 

if these points were all random outliers is 

The minimum of 3 for any given fit must occur at one 
of the N ordered, absolute residuals, T B , ~ ,  of the data 
relative to O(Z) [18]. Thus, MINPRAN’s optimization 
criteria is 

min 0 %  [ min .~(re , i ,  i, N I ]  . (8) 

Like LMS, MINPRAN is implemented using random 
sampling techniques. 

3 Pseudo Outlier Breakdown and Bias 

For a given robust estimator and pseudo outlier 
data model, our two new measures, pseudo outlier 
breakdown and pseudo outlier bias, compare the fit 
with the best “representative value” of the robust es- 
timator’s optimization criteria to the expected best 
fit to the inliers alone. A fit’s representative criterion 
value results from applying the optimization criteria 
to the expected, ordered, absolute residuals relative to 
the fit. We describe these techniques for one dimen- 
sional images, denoting the single image coordinate by 
x and the range coordinate by z .  

We model the data (2, z )  as generated by a random 
outlier process or by noisy measurements from one of 
two curves PI(.) and P2(z). The random outliers fol- 
low a uniform distribution both in the image domain, 

2This has been generalized to any known outlier distribution 
~ 7 1 .  

x 
Step Crease =r, 

L X  

Parallel 
Figure 3: Parameters controlling the data models for 
step edges, crease edges, and parallel lines. H / a  is the 
scaled height. 

which we restrict to  [0, 1],3 and in z ,  with a z range of 
20. Let [ z ~ ,  xi,l] bound the domain of each curve and 
for a given z, let z = Pi(.) + E ,  where E is zero-mean, 
independent noise governed by gaussian density g ( E ) .  

We use our data model to  create step edges, crease 
edges, and parallel lines. To do this, let po be the 
probability of a random outlier; let (1 - p0)pl and 
(1 - po)(l - p1)  be the probabilities points are from 
PI(.) and pz(z) respectively. For step edges and 
crease edges, assuming z values are governed by a 
uniform distribution, this implies z1,o = 0, z1,l = 
z2,o = p l ,  2 2 , 1  = 1 (Figure 3).  For parallel lines, 
z1,o = 22.0 = 0 and zl,l = ICZJ = 1 (Figure 3). Re- 
quiring p l  > 0.5, more points are from p~(.) than 
pZ(z), so points from p1 (z) form the inliers and points 
from /32(2) form the pseudo outliers. 

For a given data model, we can compute the ex- 
pected values of the ordered, absolute residuals rela- 
tive to any hypothesized fit. The pdf h(z ,  z )  of a point 
( 2 , ~ )  is a linear combination of the point pdfs from 
the random outlier process and from the data curves. 
The pdf for points from Pi(.) is 

and the pdf for random outliers is ho(s , z )  = 1/20. 

Using and p l  as above, the overall point pdf is 

h(Z ,+)=Po  h o ( z , z )  + (l--Po) [PI h l ( Z , Z )  + (l--P1) hZ(1J) I .  (10) 

Based on h(z ,  z ) ,  the conditional cumulative distribu- 

3We may limit the domain to [0,1] because we can show [16] 
pseudo outlier breakdown and bias to be translation and scale 
invariant in both z and, assuming B is scaled appropriately, z .  
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tion for an absolute residual T to a fit B(z) is 

F(r(B)  = 1' l:(x)+r h(z ,z)dzdz,  (11) 

and the conditional pdf of T is just f(rlB) = 
dF(rlB)/dr. Then, assuming N data points, we can 
compute the ith expected, ordered, absolute residual 
relative to B (see [3], p. 25, and [16]) as 

x ) - r  

(12) 
For any robust optimization criteria and data 

model, we can compute the representative value (see 
the discussion in Section 1) of the optimization crite- 
ria for any fit, B(z), using E[rlB,i] and F(rlB), and 
then search for the fit, #(x), with the minimum repre- 
sentative value. For fixed-scale M-estimators the rep- 
resentative value is xi p(E[rlB, i]/6); for fixed-band 
techniques, it is N . (1 - F(rbl0)); for LMS, it is the 
expected median absolute residual, E[r 16, fN/21]; for 
MINPRAN, it is mini S ( E [ r  1 6 ,  i], i, N ) .  We search 
for e(z) numerically, using multiple appropriate ini- 
tial B(z) when the optimization criteria is non-convex. 

We can now define pseudo outlier breakdown and 
bias. Since P1(z) is the expected fit to  the inliers, 
we define pseudo outlier bias as the least-squares dis- 
tance between e(z) and Pl(z), normalized by c. We 
say that pseudo outlier breakdown occurs when $(E) 
is a bridging fit. Bridging fits intersect either both 
curve segments (see Figure lb)  or neither. We use 
pseudo outlier breakdown for step edges and parallel 
lines since @a) is generally either 01 (2) or a bridging 
fit. We use pseudo outlier bias for crease edges, since 
e(z) is always a bridging fit, but the distance between 
e(z) and /?I (x) differs substantially depending on the 
robust optimization criteria. 

4 Analysis Results 

Restricting the possible fits B(z) to linear functions, 
we use pseudo outlier breakdown and bias to ana- 
lyze robust optimization criteria on step edges, crease 
edges, and parallel lines as modeled in Section 3. Be- 
cause pseudo outlier breakdown and bias are trans- 
lation and scale invariant, we parameterize these dis- 
continuities, even for crease edges, using only pl , the 
fraction of points from ,&(x), and H / c ,  the scale nor- 
malized discontinuity height (Figure 3). 

Figures 4 through 6 plot pseudo outlier breakdown 
and bias for three different types of fixed-scale M- 
estimators, for fixed-band techniques, for LMS, and 

Fixed-scale M-Estimators 

0 . 5  0 . 5 5  0 . 6  0 . 6 5  0 . 7  0 . 7 5  0 . 8  0 . 8 5  
Percent of Points on Lower Half of Step 

Fixed-band / LMS / MINPRAN 
MINPRAN - 1 

Fixed-Band * 

0 . 5  0 . 5 5  0 .6  0.65 0 . 7  0.75 0 . 8  0 . 8 5  
Percent of Points on Lower Half of Step 

Figure 4: Pseudo outlier breakdown cutoffs for step 
edges. (H/cr = 50 is the worst shown.) Below the cut- 
offs e ( ~ )  is a bridging fit. The top plot shows cut-offs 
for three Fixed-scale M-estimators. The bottom plot 
shows cut-offs for MINPRAN, fixed-band techniques, 
and LMS. 

for MINPRAN. The pseudo outlier breakdown plots 
show, as a function of p l ,  the smallest H / c  for which 
e(z) is a bridging fit. The pseudo outlier bias plots 
show, for pl  = 0.6, the bias as a function of H / u .  
For each of the plots, the additional data model pa- 
rameters, which minimally influence the results, are 
po = 0.1, zo = 1000, and N = 100. The esti- 
mator tuning parameters for fixed-scale M-estimators 
(equations 2 through 4) are taken from the literature 
(c = 1.345 for p m  [8 ] ,  a = 1.31, b = 2.04, c = 4.00 
for ph [5], and f = 1.5 for ps (21). For fixed-band 
techniques (equation 5), c = 2.5. 

Overall, although the hard-redescending fixed-scale 
M-estimator and LMS (when pl  >_ 0.6) give the best 
results, all estimators' pseudo outlier breakdown and 
bias performances are disappointing, especially since 
we are examining robust estimators under the best 
possible conditions: 6 = o for estimators requiring 
a scale parameter, and 6(x) is (approximately) at a 
global minimum of the robust optimization criteria. 

We can make several additional observations about 
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Fixed-scale M-Estimators 

Monotone - 
40 

Fixed-scale M-estimators 

20 j O /  \ 
0 
0 5 0 5 5  0 6 0 6 5  0 7 0 75 0 8 0 85 
Percent of Polnts on Lower Line 

xed-band / LMS / MINPRAN 

Fixed-Band - 
40 

0 5 0 55 0 6 0 65 0 7 0 7 5  0 8 0 8 5  
Percent of Polnts on Lower Line 

Figure 5: Pseudo outlier breakdown cutoffs for parallel 
lines. ( H / a  = 50 is the worst shown.) Below the cut- 
offs e ( ~ )  is a bridging fit. The top plot shows cut-offs 
for three fixed-scale M-estimators. The bottom plot 
shows cut-offs for MINPRAN, fixed-band techniques, 
and LMS. Pseudo outlier breakdown cut-offs are lower 
than for step edges because bridging fits' residuals, on 
average, are larger for parallel lines. 

the results, starting with fixed-scale M-estimators and 
fixed-band techniques. See [16] for results justifying 
the third and fourth items. 

0 The monotone and soft-redescending fixed-scale 
M-estimators optimization criteria have ex- 
tremely poor pseudo outlier performance. Appar- 
ently, a finite outlier rejection point, character- 
istic of hard-redescending M-estimators, is nec- 
essary to tolerate, at least to some degree, the 
asymmetry and coherent structure of pseudo out- 
liers. 

0 The hard-redescending fixed-scale M-estimator's 
optimization criterion is better than the binary, 
fixed-band optimization criteria because it retains 
the statistical efficiency of least-squares for small 
residuals. The difference between these is most 
apparent in the pseudo outlier bias measures for 
crease edges. 

8 . .  I . - . . .  

, .Least-squares - Monotone * 

x 6 -  

6 4 -  

8 3 -  

2 2 -  

4 5 -  

1 -  

0 . ' .  " " " ' 

0 2 4 6 8 10 12 14 16 18 20 
Scaled Herqht of Crease 

Fixed-band / LMS / MINPRAN 

MINPRAN 

0 2 4 6 8 10 12 14 16 1 8  20 
Scaled Helqht of Crease 

Figure 6: Pseudo outlier bias for crease edges when 
p l  = 0.6. The horizontal axis is the scaled crease 
height, and the vertical axis is the L2 distance between 
/31(z) and &x). The top plot shows three fixed-scale 
M-estimators. The bottom plot shows MINPRAN, 
fixed-band techniques, and LMS. The pseudo outlier 
bias curve for least-squares is included in each figure. 
As pl  increases, each curve gradually flattens. 

Reducing the tuning parameters to  narrow Ph 

(equation 3) for the hard-redescending fixed-scale 
M-estimator lowers its pseudo outlier breakdown 
cut-offs and reduces its pseudo outlier bias [16]. 
This justifies the lower parameter values com- 
monly used in vision [l,  111, although pseudo out- 
lier breakdown and bias still occur for small mag- 
nitude discontinuities. 

0 When (T must be estimated along with O(z), M- 
estimator performance is much worse than that 
of fixed-scale M-estimators because 6 is generally 
over-estimated making discontinuity magnitudes 
appear smaller relative to C? [16]. 
Obtaining the optimum fit using a hard- 
redescending fixed-scale M-estimator is difficult 
because Ph (equation 3) is non-convex. In gen- 
eral, to find the global optimum, expensive, non- 
gradient search techniques, such as the Hough 
transform or random sampling, must be used. 

Of the two estimators that do not require 6, LMS 
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and MINPRAN, LMS has the better pseudo outlier 
performance, at least when 01 (2) has enough inliers, 
i.e. when (1 -p~)pl > 0.5. MINPRAN’s performance, 
which is quite poor, can be improved dramatically by 
a minor change that allows it to  extract the two best 
disjoint (no shared inliers) fits and compare these to 
the single best fit, selecting one fit or two depending 
on which appears less random [17]. This change makes 
MINPRAN as effective as the hard-redescending fixed- 
scale M-estimator. 

5 Conclusions 

By defining pseudo outlier breakdown and bias, new 
robust estimator performance measures that are based 
on expected data values, and using them to study ro- 
bust estimator optimization criteria on data contain- 
ing inliers, random outliers, and pseudo outliers, we 
have shown that robust estimators can not reliably ex- 
tract accurate polynomial surface patches in the neigh- 
bor of discontinuities. 

Choosing between the estimators to get the best 
possible performance depends on the information 
available about the data: when the scale parame- 
ter 5 is known a priori and constant throughout the 
data, one should use a hard-redescending fixed-scale 
M-estimator optimization criteria with reduced tuning 
parameters and either a random-sampling or weighted 
Hough transform search technique. When o is un- 
known but the random outlier distribution is known, 
one should use the modified MINPRAN algorithm 
[17]. Finally, when neither 5 nor the outlier distriub- 
tion is known, one should use least median of squares 
(LMS). 

Since robust estimator performance on pseudo out- 
liers is insufficient, the pseudo outlier problem must 
be addressed explicitly to  avoid the problems we have 
described. The simplest technique is to avoid image 
regions that may contain discontinuities until good ini- 
tial fits are known in other regions [2]. This technique, 
however, assumes piecewise smooth data with isolated 
discontinuities, an assumption which can not, in gen- 
eral, be met. Thus, a general solution to  the pseudo 
outliers problems will require simultaneously obtain- 
ing multiple fits when there are multiple surfaces in 
an image region. This is the main goal of our ongoing 
research. 
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