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Abstract

This paper presents an automatic registration system for aligning combined range-
intensity scan pairs. The overall approach is designed to handle several challenges
including extensive structural changes, large viewpoint differences, repetitive struc-
ture, illumination differences, and flat regions. The technique is split into three
stages: initialization, refinement, and verification. During initialization, intensity
keypoints are backprojected into the scans and matched to form candidate trans-
formations, each based on a single match. We explore methods of improving this
image-based matching using the range data. For refinement, we extend the Dual-
Bootstrap ICP algorithm for alignment of range data and introduce novel geometric
constraints formed by backprojected image-based edgel features. The verification
stage determines if a refined transformation is correct. We treat verification as a
classification problem based on accuracy, stability, and a novel boundary alignment
measure. Experiments with 14 scan pairs show both the overall effectiveness of the
algorithm and the importance of its component techniques.

Key words: range registration, iterative closest point, keypoint, decision criteria,
physical changes

1 Introduction

This paper addresses the problem of automatically computing a three-dimensional
rigid transformation that aligns two range datasets, a problem that frequently
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arises in three-dimensional (3D) modeling of large-scale environments and in
structural change detection. We present a robust algorithm that can accurately
estimate and verify this transformation even in the presence of widely-differing
scanning viewpoints (leading to low overlap between scans) and substantial
structural changes in the environment between scans. Figure 1 illustrates two
examples of challenging scans successfully registered using our framework.
The first example shows the alignment of two scans of a building taken from
substantially different viewpoints, with trees occluding much of the common
structure. The second example shows two scans of a parking lot and a build-
ing taken four hours apart, with different vehicles appearing between the two
scans. Later in the paper, we demonstrate the alignment of a scan taken inside
a room with one taken through a doorway looking into the room, as well as
an alignment of two scans of a building where most of the common structure
is repetitive (Figure 9).

We assume a range scanner that has an associated, calibrated camera ac-
quires the datasets, producing point measurements in 3D and essentially-
simultaneous intensity images. Many current range scanners have this data
acquisition capability, and it can be added to older scanners. Our registration
framework effectively exploits the information available in the range data, the
intensity images, and the relationship between the two. It requires neither
external measurements such as GPS coordinates nor manual intervention.

Our fully automatic approach to registration involves three distinct stages
— initialization, estimation, and verification — exploiting the combination of
range and intensity information at each stage. During initialization, intensity
keypoints and their associated SIFT descriptors [39] are extracted from the
images and backprojected onto the range data. A three-dimensional coordi-
nate system is established for each keypoint using its backprojected intensity
gradient direction and its locally computed range surface normal. Keypoints
are then matched using their SIFT descriptors. We explore several techniques
that use the range data to improve the success of matching intensity keypoints.

Since each keypoint has an associated 3D coordinate system, each match pro-
vides an initial rigid transformation estimate. This eliminates the need for
a RANSAC-style search for minimal subsets of matches in order to gener-
ate transformation estimates. Instead, the keypoint matches are rank-ordered
based on a distinctiveness measure, and each is then tested using the estima-
tion and refinement procedures. As we will show, this approach is particularly
effective for some of the most challenging image pairs because they have very
few correct keypoint matches.

During the estimation stage, initial estimates are refined using a robust form
of the Iterative Closest Points (ICP) algorithm [6, 14], starting with points
taken only from the region surrounding the match in the two scans. The re-
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Fig. 1. Two example challenging pairs that our algorithm registers (DCC and MRC
Parking lot). The top and center of the left column show a pair of scans taken from
vastly different viewpoints, in which trees occlude much of the common structure.
The top and center of the right column show two scans of a parking lot and building
where all of the vehicles are different between the two scans. In both cases, as shown
on the bottom, the algorithm automatically and accurately aligned the scans. The
spheres in the figures indicate the scanner’s location.
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gion is gradually expanded to eventually cover the overlap between the data
sets. Region growth is controlled by the uncertainty in the parameter estimate
generated by ICP, with more certain estimates leading to faster growth. The
basic structure is adapted from the Dual-Bootstrap algorithm previously pro-
posed for 2D image registration [63,69], but incorporates several innovations to
robustly solve the 3D rigid registration problem. For example, ICP correspon-
dences are generated between range points and also between backprojected
intensity features. The latter produce constraints tangential to the range sur-
faces, complementing the surface normal distance constraints generated from
the range data. As we show experimentally, the growth and refinement pro-
cedure nearly always converges to an accurate alignment given a reasonably
accurate initial keypoint match. This shows further why a RANSAC-style
search is unnecessary.

The final part of the algorithm is a verification test to decide whether a refined
transformation estimate is correct. This test uses a simple, yet effective, linear
classifier to combine measurements of alignment accuracy for both image and
range features, a measure of the stability of the estimate, and a measure of
the consistency in the position of range boundaries. These measures, espe-
cially the boundary measure, are more sophisticated than have been used in
the past [32], but are necessary for effective decisions when the scans involve
physical changes, simple geometries, and repetitive structures. Moreover, their
effectiveness enables a simple, greedy method of processing the rank-ordered
initial keypoint matches. That is, the matches are tested one-by-one; as soon
as a candidate estimate passes the verification test, the result is accepted as
a “correct” alignment. If all of the top M matches are rejected, the algorithm
stops and reports that the scans cannot be aligned.

The overall algorithm is summarized in Figure 2 and described in detail in the
remainder of the paper. Section 2 outlines related research. Section 3 discusses
the range/image data and the preprocessing of this data. Section 4 presents
the initialization technique based on detection and matching of augmented
keypoints. Section 5 describes the region-growing refinement algorithm based
on both range correspondences and backprojected intensity correspondences.
Section 6 formulates the verification criterion. The overall effectiveness of the
algorithm, together with a detailed analysis of the individual components, is
presented in Section 7. Section 8 discusses the results, summarizes our contri-
butions, and concludes the paper.

2 Related Work

The problem we address is a variation on the range scan registration problem
that has been studied extensively over the past several decades [12, 55, 56],
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with solutions used in contexts as diverse as object modeling [4, 7], the study
of architecture [1], digitization of cultural artifacts [5, 38], and industrial in-
spection [48]. Work on range image registration can be roughly divided into
techniques for (1) initial registration or coarse alignment of a pair of scans,
(2) fine registration of scan pairs, and (3) simultaneous registration of mul-
tiple scans given the results of pairwise scan registration. While the latter
is an important problem [4, 7, 32, 51, 59], we focus here on the problems of
initialization and refinement for a scan pair, while adding the substantial-but-
not-well-studied issue of determining when the scans are well-aligned or can
even be aligned at all.

A wide variety of techniques have been proposed for initial registration of
range scans. All are based on extracting and matching summary descriptions
of the scans. Some methods use extraction and matching of distinctive loca-
tions, such as points of high curvature [15] or other extremal locations [66].
Other feature-based methods have been developed for specific contexts, for
example exploiting the presence of windows and building corners in the regis-
tration of architectural scans [13,61]. A second set of approaches, mostly used
for aligning scans of single, smooth objects, includes methods that extract
and match summary descriptions over small regions of the data. These in-
clude point signatures [16], “splashes” [62] and the more recent integral point
descriptors [23]. A third set is comprised of methods that summarize larger
regions or even the entire scan as the basis for registration and 3D object
recognition. This includes work on extended Gaussian images (EGIs) [31] and
spherical attribute images (SAIs) [29], where shapes are described using a
mapping of a scan onto a sphere based on estimated surface normals. This
work has mostly been superseded by spin images [33, 35], extensions of the
shape-context work [2] to 3D [21], and tensor-based methods [43]. Recently,
Makadia et al. [40] resurrected the use of EGIs by reducing the EGI to a
“constellation” of peak locations on the Gaussian sphere and matching these
constellations between scans. This matching leads to the generation of several
relative pose hypotheses between scans, each of which is then tested. This
theme of hypothesis generation and testing is echoed in our approach.

When calibrated intensity images are available in addition to range scans,
intensity features may be combined with range information to develop different
initialization methods. One approach is to augment large region descriptors
such as spin images with intensity data, producing a hybrid descriptor [11]. A
more common approach is to build on the rapid progress that has been made
recently in the matching of intensity keypoints between images taken over large
changes in viewpoint [45, 46]. Proposed keypoint detection techniques have
been based on the Laplacian-of-Gaussian operator [39], information theory
[36], Harris corners [44], and intensity region stability measures [41]. Following
detection, summary descriptions of keypoints are constructed as the basis for
matching. While a number of methods have been proposed [2, 20, 25, 39], the
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SIFT descriptor [39], a spatial histogram of intensity gradients, has proved the
most effective [45]. Several authors have proposed combinations of keypoint
descriptor methods with range data for the initialization problem. Roth [53]
used a combinatorial search to match keypoints that have been backprojected
into 3D, but did not exploit the intensity information in the matching process.
Wyngaerd and Van Gool [67] extracted and matched combined intensity and
range feature vectors, computed at the intersection of a sphere with the range
surface. Bendels et al. [3] matched 2D SIFT features, backprojected them onto
the range data, and then used RANSAC on these points in 3D to identify an
initial rigid transformation and filter incorrect matches. This does not exploit
3D information during the computation of the SIFT descriptor, as has been
shown in [57] as well as our own earlier work [37]. In particular, Seo et al. [57]
used 3D geometry to eliminate keypoints in non-planar regions and to rectify
SIFT regions prior to computing the descriptor. We explore similar techniques
here and also analyze in detail the effectiveness of this method.

We now turn to the refinement stage of registering a pair of range scans. In the
literature, refinement usually depends on application of the well-known itera-
tive closest point (ICP) algorithm [6,14,42]. ICP starts from an initial trans-
formation estimate, and uses this to map points from one scan (the “moving”
scan) onto the second scan (the “fixed” scan) in order to establish temporary
correspondences between points in the two scans. These correspondences are
then used to refine the estimate. The process iterates until a convergence cri-
terion is met. The simplest and most common basis for establishing correspon-
dence is the original idea of minimizing geometric distance between points, al-
though a variety of shape properties has been exploited as well [58]. Distance
metrics used in the estimation step of ICP have focused on the Euclidean
distance and point-to-plane distance (“normal distance”) measures, but more
recently, quadratic approximations [47] have been proposed. Efficient varia-
tions of ICP have been studied extensively [55]. Earlier work [17, 70] studied
robustness to missing components of scans due to differences in viewpoints.
The matching and refinement loops of ICP were cast into a Expectation Max-
imization (EM) framework in [26]. Genetic algorithms have been applied to
improve the domain of convergence of ICP [10]. Convergence properties of
ICP were studied recently by Pottmann et al. [50]. This work clearly shows
the advantage of using normal distances instead of Euclidean distances, and
suggests even faster convergence with higher-order distance approximations.
A version of normal-distance ICP that is robust to mismatches and missing
structures is at the core of our refinement algorithm.

Several researchers have combined intensity information with ICP. In one ap-
proach, color is treated as an additional geometric attribute to be combined
with position in the determination of correspondences in ICP matching [19,34].
An alternative approach uses intensity and other geometric attributes to filter
closest point matches [24, 49]. Projection-based methods have been proposed
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as well, using image-based optical flow for matching [68] and, more recently,
using color and depth differences in 2D coordinate systems to drive 3D regis-
tration [52]. Overall, two difficulties arise when combining range and intensity
information to drive ICP that are especially significant in our particular prob-
lem domain: (1) intensity/color information and range data have different
metric properties, and (2) intensities can change substantially between scans.
We address both of these problems below through a novel technique that uses
geometric constraints derived from matching backprojected image features.

The final concern is the problem of determining if two scans are actually
well-aligned. This issue has received much less attention than initialization
and refinement, in large part because of the limited domain in which fully
automatic registration has been applied. Silva, Bellon and Boyer proposed an
“interpenetration measure” that checks the fine alignment of two surfaces [60].
The most extensive work is that of Huber and Hebert [32] whose algorithm
tests both alignment accuracy and the fraction of mismatches that do not
violate visibility constraints. In our context, visibility constraints must be
carefully defined to accommodate for the possibility of changes between scans.
Our approach does not exploit visibility directly, but instead looks at measures
of accuracy, stability, and the alignment of visible depth discontinuities. Our
decision measures substantially extend our earlier work both for range image
registration [37] and intensity image registration [69]. Finally, in registration
and mosaic construction based on keypoint matching, combinatorial analysis
of keypoint match count provides a probabilistic measure of correctness [8].
Such an approach does not work here due to the low number of correct keypoint
matches in difficult scan pairs.

3 Preprocessing and Feature Extraction

This section discusses Steps 1 and 2 of our algorithm (Fig. 2), the preprocess-
ing of the range data and the intensity images, including backprojection of
intensity features onto surfaces approximated from the range data.

We denote the set of points associated with a scan as P , and the individual
point locations as Pi ∈ P . As mentioned above, we assume a range scan-
ner that has an associated, calibrated camera acquires the datasets. Since all
points in a scan are acquired from a single viewpoint, the points can be easily
mapped into a spherical coordinate system and binned in two dimensions us-
ing the spherical angles. One use of this binning structure is to find the nearest
scan point Pi to any backprojected image point, which is straightforward be-
cause the image and range scanner viewpoints nearly coincide. A second use
is to accelerate matching through computation of approximate closest points
as in [55].
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(1) Preprocess the range scans to filter outliers, compute surface normals, and
estimate scales (Sec. 3.1).

(2) Preprocess the intensity images to detect intensity keypoints and edgel features
(Sec. 3.2), and then backproject both onto the range surfaces (Sec. 3.3).

(3) For each scan and its associated images,

(a) Filter out keypoints that overlap depth discontinuities (Sec. 4.1).
(b) Compute SIFT descriptors for each keypoint using the surface orientation

of the backprojected keypoint to reorient the image neighborhood over
which the descriptor is computed, making it viewpoint invariant (Sec. 4.1).

(c) Filter keypoints in the moving scan to ensure an even spatial distribution
of keypoints, while favoring higher strength keypoints.

(4) Match the keypoint descriptors between scans, compute a distinctiveness
measure for each match, and order the resulting matches by distinctiveness
(Sec. 4.2)

(5) For m = 1 to M do

(a) Use keypoint match m to compute the parameters, Θ̂0, of an initial 3D
rigid transformation and establish a small 3D region, Ω0, centered on the
matched keypoint location from the moving scan. (Sec. 4.2)

(b) t = 0
(c) Repeat

(i) Apply robust ICP using a sampling of both range points and backpro-
jected intensity features in Ωt in the moving scan (Sec. 5.1). ICP pro-
duces a new vector of estimated transformation parameters, Θ̂t+1,
and an associated covariance matrix Σ ˆΘt+1

.

(ii) Compute an expanded bootstrap region Ωt+1 (Sec 5.4).
(iii) t = t + 1

(d) Until Ωt covers the apparent overlap volume between the fixed and moving
scans.

(e) Run ICP to convergence, producing an estimate Θ̂m.
(f) Compute each of the measures in the decision criteria, and combine using

a linear discriminant. If Θ̂m passes, terminate with a successful alignment
(Sec. 6).

(6) If all M initializations are rejected by the decision criteria, indicate that the
scans cannot be aligned and terminate.

Fig. 2. Outline of the complete registration algorithm.
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3.1 Range Scan Preprocessing

The scan points in 3D are preprocessed to eliminate outliers, to estimate a
surface normal, ηi, associated with each point, and to estimate the uncer-
tainty in feature position along this normal in real units, represented as a
scale (standard deviation) σi. The normal estimation algorithm uses a ro-
bust least-squares approach applied over a small, adaptive neighborhood that
avoids rounding of sharp edges. The values of the scale estimates depend on
both the noise in the scanner (2-4 mm for our scanner) and the degree to
which the surface varies from planarity. The latter is particularly important
because the intersample spacing is relatively high (e.g. 2-5 cm) and surfaces
in outdoor scenes can be quite rough. Thus, the estimated scale values tend
to vary across the data set and can be as high as 1-2 cm. This consideration is
important because even for perfectly-aligned scans, “correct” correspondences
may be separated by up to half the sample spacing on the surface; there-
fore, interpreting any measure of distance between corresponding points must
consider this locally-estimated scale.

The final step in preprocessing the range scans is to locate non-trivial depth
discontinuities. Adjacent discontinuity locations in the scan grid are linked to
form chains; the very short chains and smaller discontinuities are discarded. In
outdoor scans, these discarded points usually correspond to boundaries in trees
or grass, which are unlikely to be stable in subsequent scans. The remaining
boundaries are used in the verification tests, as discussed in Section 6.

3.2 Keypoint and Intensity Feature Detection

Next, keypoints are located in the intensity images. These will be used as the
basis for initialization of the transformation estimate. We also locate intensity
features, which will be used in ICP refinement of the transformation estimate.

We define keypoints as scale-space peak locations in the magnitude of the
Laplacian-of-Gaussian operator, as in the well-known SIFT algorithm [39].
We use techniques similar to those in [9] to ensure widespread feature distri-
butions. In particular, the minimum spacing between keypoints is set to be
linearly proportional to the product of the field of view angles of the scanner.
This ensures a sufficient number of keypoints for small fields of view without
generating an overly large number of keypoints for larger fields of view.

At the end of the keypoint computation, each keypoint has an associated
location uj, gradient direction ĝj and detection scale sj, all measured in image
coordinates.
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The intensity features are sampled edge elements (edgels) — image locations
having a significant peak in the gradient magnitude along the gradient direc-
tion. The detection technique is similar to the edge detection method proposed
in [27]. Adaptive thresholding is used to ensure a widespread distribution of
features. Just as with keypoints, each feature has an associated normal direc-
tion n̂j, location uj, measured to subpixel accuracy along n̂j, and detection
scale sj.

3.3 Backprojection

Pj

uj

gj

Uj

scanner / camera

image plane

scene patch

Fig. 3. Keypoints and associated image gradients are backprojected to form a 3D
coordinate frame around each backprojected point.

Both keypoints and features are backprojected into 3D as illustrated in Fig-
ure 3. The line of sight associated with image point uj is found and the closest
scan point Pj is found to this line of sight. The intersection of the line of sight
with the plane defined by Pj and its normal ηj determines the backprojected
location, Uj. The backprojection of ĝj is the unique direction vector, γj, that
is normal to ηj and projects into the image at uj parallel to ĝj. A 3D coordi-
nate system is established at Uj by making γj the x axis, ηj the z axis and
ηj × γj the y axis. Finally a scale Sj is computed from sj by backprojecting
the point uj +sjĝj onto the plane and computing the distance of the resulting
point to Uj. This is the physical analog to the detection scale in the image.
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Fig. 4. Illustrating the effect of discontinuity filtering on keypoints. This figure shows
the range data from the point of view of the scanner, where the red spheres are the
filtered keypoints and the blue spheres are the remaining keypoints. The sizes of
the spheres are proportional to the scales of the backprojected keypoints.

4 Initialization Based on Keypoint Matching

This section describes the procedure for generating a sequence of initial trans-
formation estimates — Steps 3, 4, and 5a of the algorithm. In doing so, we
investigate ways to augment keypoint matching with 3D information, building
on work in [37,57].

4.1 Keypoint Filtering and Descriptor Computation

Step 3a is a filtering of keypoints that are near depth discontinuities. The
image regions surrounding these keypoints incorporate information from sur-
faces at different depths and therefore change discontinuously with changes in
viewpoint. The filtering process is a simple planarity check [57], implemented
by comparing the variance of the points with respect to a planar fit. The
plane’s normal is taken from the robustly-estimated normal calculated in the
preprocessing step. The center of the plane is calculated as the mean of range
samples inside the volume bounded by the backprojection of a circle of radius
2sj about the keypoint center on the image plane. If the region is rough, highly
curved, or incorporates multiple surfaces, the variance of the plane from the
local region will be much higher than the variance of the range data, σ2

i , and
the keypoint will be eliminated. Figure 4 illustrates an example result.

In Step 3b our goal is to create a descriptor that is invariant to changes in
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Fig. 5. Illustrating the computation of the augmented keypoint descriptor. The affine
mapping from the surface tangent plane to the image plane determines a mapping
between a square grid on the surface and an affine grid in the image. On the left
the augmented keypoint descriptor is shown on the range plane it is computed on –
the affine approximation is visible here since the descriptor region is not a perfect
square. The right image shows the descriptor region projected into the image plane.

viewpoint. Our strategy is to compute a SIFT descriptor [39] using the planar
surface centered at the backprojected keypoint (see Sec. 3.3) to create an affine
re-mapping of the image region. Algorithms that work with intensity images
alone use the image data itself to infer such an affine mapping [46].

Recall that the SIFT descriptor is formed as a 4 × 4 spatial grid of orien-
tation histograms, with 8 orientation bins per histogram. Concatenating the
histograms and normalizing gives the 128-component descriptor vector. In our
technique, the SIFT 4× 4 square grid is aligned with the x and y axes of the
keypoint’s backprojected coordinate system and the size of the grid is deter-
mined by the backprojected detection scale. Using an affine approximation to
the mapping between this tangent plane and the image plane, the boundaries
of this grid are mapped into the image plane, and the image locations and
gradients falling within these boundaries are mapped back onto the surface.
The backprojected locations are used to assign the points to one of the 4× 4
SIFT grids and the affine-mapped gradient vectors are entered into the 8-
bin orientation histogram associated with each grid block. After all gradients
have been entered into the histograms, each histogram entry is divided by the
amount of interpolated weight that its grid block received. The 128-component
descriptor is then extracted, and it is normalized in the same way as in [39].
Modulo sampling and other imaging artifacts, the resulting descriptor should
be invariant to image scaling and to rotation and translation in 3D. This is a
similar approach to Seo et al [57]; however, we use only affine approximation
and do not resample the actual intensities. The process is illustrated in Figure
5.
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4.2 Matching and Initialization

The keypoints extracted from two scans are matched based on the SIFT de-
scriptors of the keypoints as in [39]. The backprojected scales of the keypoints
are approximate physical scales and therefore, in theory, should be invariant
to the position of the scanner. A keypoint match is only allowed if the ratio of
the larger to the smaller scale is less than a constant. (This type of comparison
is possible because the constraints are based on back-projected and therefore
physical scale measurements.) We have experimentally determined an effective
value of this constant to be 2.0, reflecting the uncertainty in the estimates of
scale due to sampling and the lack of affine correction of the scale estimate.

For each keypoint from one scan, among the matches allowed by the scale
ratio test, the two keypoints whose descriptor vectors are closest in Euclidean
norm are located. We define the distinctiveness measure of the best match as
the ratio of the best to the second best descriptor distance [39].

The keypoint matches are ordered by increasing value of the distinctiveness
measure and tested in this order in the next step. For each match tested,
simply computing the transformation between the backprojected coordinate
systems of the two keypoints generates an initial 3D rigid transformation.
The initial region, Ω0, starts as a cube aligned with the axes of the moving
scanner’s coordinate system, with side length 8 times the maximum of the
point spacing and the backprojected pixel spacing on the surface. This initial
region is expanded if necessary to contain at least 100 range points.

5 Refinement

The goal of refinement is to substantially improve the initial keypoint-based
alignment between scans. This is done iteratively by alternating steps of (a) re-
estimating the transformation using only matches for points in the bootstrap
region Ωt and (b) expanding the bootstrap region. Several iterations of refine-
ment are illustrated in Fig. 6. Aside from this region growth procedure, the
most important novel contribution in this section is the combination of range
scan correspondences and back-projected intensity feature correspondences in
estimating the rigid transformation parameters.
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Fig. 6. Several iterations of ICP estimation and region growth of a relatively easy
pair called “VCC North”. The colored regions represent the area inside the current
bootstrap region, Ωt. The first frame shows the initial alignment of the scans and
the initial region. Subsequent frames show the alignment and the region following
iterations 1, 2, 5, 8, and 14 respectively. The correction of the strong initial mis-
alignment can be clearly seen. Regions that are solidly one color or the other were
only seen from the viewpoint of one scan.

5.1 Robust ICP

The core idea of ICP is well known. An initial transformation estimate is used
to map points from the moving scan to the fixed scan. For each mapped point,
the closest point in the fixed scan is located and these two points are used
to form a temporary correspondence. The set of all such correspondences is
used to re-estimate the parameters of the transformation. The whole process
then iterates until some convergence criterion is met. In our refinement step,
we do not wait for ICP to converge for each bootstrap region Ωt, but instead
stop and expand the region after two ICP iterations. After region growth has
converged ICP continues to run until convergence.

Let Θ̂ be the current parameter estimate and, for moving point Pi, let

P′
i = T(Pi; Θ̂).

be the mapped point. Next, let Qj be the closest point, in Euclidean distance,
to P′

i. This forms the correspondence (Pi,Qj). Let ηj be the precomputed
(unit) surface normal at Qj. The objective function for estimating the param-
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eters from this set of correspondences is

F (Θ) =
∑

(Pi,Qj)

ρ([T(Pi; Θ)−Qj]
>ηj/σi,j), (1)

where
[T(Pi; Θ)−Qj]

>ηj (2)

is the “normal distance” — the distance from T(Pi; Θ) to the plane through
Qj with normal ηj — and ρ is a robust loss function. We use the Cauchy ρ
function,

ρ(u) =
C2

2
log

(
1 +

u2

C2

)
, (3)

with C = 2.5 (consistent with typical values from the statistics literature [30]).
Finally, σ2

i,j is the variance in the normal distance alignment error of the match.
Estimation of σ2

i,j is discussed in detail below.

Minimization of F (Θ) to produce the next estimate Θ̂ is accomplished using
iteratively reweighted least squares (IRLS) [64], with weight function

wi,j =
1

σ2
i,j

ρ′(ui,j)

ui,j

=
1

σ2
i,j(1 + u2/C2)

(4)

where ui,j = [T(Pi; Θ)−Qj]
>ηj/σi,j, and weighted least-squares formulation

Fw(Θ) =
∑

(Pi,Qj)

wi,j[(T(Pi; Θ)−Qj)
>ηj]

2 (5)

In each iteration of IRLS, the update to the parameter estimate is achieved
using the small-angle approximation to the rotation matrix. Since the incre-
mental changes to the parameters tend to be small, this approximation works
well. At the end of these two iterations the covariance matrix, ΣΘ, of the trans-
formation parameters is estimated from the inverse Hessian of (5). See [22,65]
for more details.

5.2 Backprojected Intensity Constraints

The algorithm description thus far has not included constraints from matching
backprojected intensity features. A novel step in our work is to use these as
geometric constraints in the same way as correspondences from range point
matching. Our goal is to create constraints on the 3D rigid transformation that
complement the constraints from range matches. Since the latter are based on
distances normal to surfaces, we design the intensity constraints to operate
tangentially to surfaces (Fig. 7). The importance of this is most easily seen in
the extreme case of aligning scans of a single, patterned, planar surface: range
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correspondences would only determine three degrees of freedom (DoF) of the
transformation, leaving two translational and one rotational DoF in the plane.
The intensity feature correspondences are designed to determine these three
DoF.

Range Constraints Intensity Constraints Combined Constraints

Fig. 7. Illustrating the complementary role of constraints from matching range points
and from matching backprojected intensity features. Range matches provide con-
straints normal to the surface, while backprojected intensity feature matches provide
constraints in the tangent plane of the surface. The top row shows the features pro-
viding constraints. The bottom row shows constraints placed on a rigid transform
by each group of features. Circles represent rotational degrees of freedom and lines
represent translational degrees of freedom. Highlighted circles and lines indicate
those that are constrained.

As mentioned earlier, within the 2D image, each intensity feature has a loca-
tion and a normal. These are backprojected onto the estimated surface in 3D,
giving a location Uj, and direction γj. The latter is in the tangent plane of
the surface. When this backprojected feature is correctly matched to a back-
projected feature Vi from the moving scan and the transformation correctly
aligns the points, then (ignoring noise) we should have

[T(Vi; Θ)−Uj]
>γj = 0. (6)

Since this has the same form as the normal distance constraint (2), we can
match backprojected image features and use them to constrain the estimate
of transformation parameters in the same manner as range correspondences
and their constraints. This makes implementation straightforward.

There are several important details to making this approach succeed. The
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first and the most important issue is estimating the variance σ2
i,j of the align-

ment error for both types of correspondences. This is used both to separate
inliers from outliers and to assign relative strength to the two types of con-
straints — larger variances on one type of constraint lead to lower overall
weight (4), even for inliers, and therefore less influence on the transformation
parameter estimate. Estimation of variance is discussed in detail in the next
section. Second, when sampling points in the current moving scan region Ωt

to form matches and thereby constraints on the transformation, the algorithm
attempts to choose the same number of each type of feature. We rely on the
computation of the variances and the resulting robust weights (4) to balance
the relative influence of the two types of constraints. Finally, for intensity
feature matches, we use the Beaton-Tukey biweight function

ρ(u) =

(1− u2/B2)3 |u| < B

0 |u| ≥ B
, (7)

as in [69], in place of the Cauchy loss function (3), with B = 4.5 (consistent
with parameters developed in the statistics literature [30]). The Beaton-Tukey
function more aggressively downweights potential outliers, which is more ap-
propriate for image-based constraints where there tend to be more outliers —
mostly due to viewpoint and illumination changes — and the alignment errors
of these outliers tends to be only marginally higher than that of the inliers.

5.3 Correspondence Variances

When estimating the rigid transformation parameters for a fixed set of matches,
the variance in the alignment error, through its effect on the weight function
(4), is used to eliminate the influence of outlier matches and to balance the
influence of constraints from range point correspondences and from backpro-
jected image feature correspondences. This prominent role of the variance
marks a different approach to robustness than prior work on range registra-
tion [17,70], but it is consistent with traditional robust estimation methods [64]
as well as our own prior work on registration [69]. The particular challenge
faced here is that the variance must be treated as both unknown and varying
from point to point. The latter follows from two observations: (1) as discussed
in Sec. 3.1, due to intersample spacing, surface roughness and surface curva-
ture, the variance in the locally-estimated planar surface approximation tends
to change substantially from range point to range point, and (2) the variance
in the positions of backprojected intensity features tends to increase with dis-
tance from the scanner.

In order to make the problem of estimating the alignment error variances
tractable, we make two simplifying assumptions. First, the alignment error
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variance is assumed to be proportional to the sum of the variances of the point
positions along their normal direction. Thus, if σ2

i and σ2
j are the variances of

the moving and fixed points, Pi and Qj respectively, then the variance in the
normal distance alignment error, [T(Pi; Θ)−Qj]

>ηj, is modeled as

σ2
i,j = k2

c (σ2
i + σ2

j ), (8)

with kc as yet unknown. This assumption (which also depends on the point
position errors in the two scans being independent of each other and primarily
along the surface normal directions) is reasonably accurate at convergence,
when the surfaces’ normals are aligned and the primary factor in the remaining
error is due to point position errors rather than uncertainty in the parameter
estimate. Moreover, since the parameter estimate tends to be quite accurate
within the bootstrap region throughout the computation, the approximation
holds during all iterations. Indeed, we have found experimentally that the
estimated value of kc stays quite close to 1.0 for range feature correspondences.

The second assumption is that the error in the true position of the image fea-
tures in the image coordinate systems is proportional to the image smoothing
scale at which they are detected. This ignores a number of properties of the
imaging process and the imaged surfaces; focusing only on the well-known
effect that smoothing has on edge-position uncertainty. We have found this
assumption to be a reasonable first approximation both in past work [69]
and in the algorithm described here. Given this assumption, the variance of
a backprojected image feature at location Ui is k2

eS
2
i along the backprojected

direction γi (which is in the surface tangent plane), where Si is the backpro-
jection of the smoothing scale for image feature i. Combining this with (8)
yields the variance for correspondences between backprojected image features
as

σ2
i,j = k2

ck
2
e(S2

i + S2
j ) = k′c

2
(S2

i + S2
j ). (9)

In the latter, we have combined the two unknowns into a single value k′c.
Thus, we have the same form for the variance in the normal-distance alignment
error for both range point correspondences and backprojected intensity feature
correspondences.

The Appendix describes how the scaling factor kc is estimated from a given
set of correspondences. Estimation of k′c is identical, and we never explicitly
estimate ke.

5.4 Region Growth

The region growth technique is a simple extension of the region growth tech-
nique for two-dimensional images used in the Dual-Bootstrap algorithm [63,
69]. As mentioned earlier, the region is an axis-aligned rectangular solid in

18



3D, and all computation is done in a coordinate system centered on this solid.
Growth occurs by considering the location Y in the center of each face of the
solid, and computing the transfer error covariance [28, Ch. 4] of the mapping
of this point. If the Jacobian of the mapping function is J = ∂T/∂Y, the
transfer error covariance matrix of the mapped point Y′ = T(Y; Θ̂) is

ΣY′ = JΣθJ>. (10)

Here, the rotation component of the transformation is parameterized using
the small angle approximation, making Σθ a 6×6 matrix, the Jacobian 3×6,
and the resulting transfer error covariance, ΣY′ 3 × 3. The latter covariance
is projected onto the outward face normal of the rotated Ωt at Y′. Growth
is inversely proportional to the resulting scalar variance value. Each side is
allowed to expand by up to 50% of its distance from the center, indicating
that the solid can at most double in size in each dimension. This only occurs
when there is a great deal of confidence in the estimate, and growth is typically
slower earlier in the computation.

5.5 Iterations and Convergence

Since normal-distance ICP does not provably converge, neither does our over-
all refinement algorithm. However, we have not encountered a problem that
does not converge in practice. Our criterion for region growth convergence
is that Ωt has expanded sufficiently to cover the region of overlap (as com-
puted from the estimated transformation) between the two scans. Our crite-
rion for ICP convergence is that the mapping of points on the region boundary
does not change substantially between ICP iterations. Region growth typically
converges in about 10 iterations, and ICP converges almost immediately af-
terward. Since many of the earlier iterations occur with significantly fewer
correspondences, overall convergence is quite fast (see Section 7.4).

6 Decision Criteria

After the refinement procedure converges, the algorithm checks the result to
determine if the alignment is sufficiently accurate and reliable to be considered
correct. The challenge in doing so is handling potential structural/illumination
changes as well as low scan overlap. Thus, measures such as Huber’s visibility
test [32], which assumes no changes between the scans, cannot be used. Our
test incorporates seven measures: accurate alignment of both image feature
and range correspondences; accurate alignment of normal directions for both
image feature and range correspondences; stability of the transformation es-
timate; and two novel boundary alignment measures. These are all combined
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using a linear classifier to determine whether the registration is correct or
incorrect.

6.1 Positional Accuracy

Accuracy is the most natural measure. We use the normal-distance alignment
error of the correspondences from the last iteration of refinement after region
growth has converged. For range scan correspondences this is

PAR =

 ∑
(Pi,Qj)

wi,j[(T(Pi; Θ)−Qj)
>ηj]

2k2
c (σ2

i + σ2
j )/

∑
(Pi,Qj)

wi,j

1/2

. (11)

An identical measure, denoted by PAI , is used for image feature correspon-
dences.

6.2 Angular Accuracy

The angular accuracy measure ensures that the feature directions — range
surface normals and backprojected feature normals — are well-aligned, com-
plementing the positional accuracy measure. This is most effective for testing
image feature correspondences, since their normal directions vary much more
quickly than the normals of smooth surfaces. For any correspondence (Pi,Qj)
from the final ICP iteration, let wi,j be the final weight, let η′i be the mapping
of Pi’s normal direction into the fixed image, and let αi,j be the angle between
η′i and ηj. Then the angular accuracy measure is

AAR =
∑

(Pi,Qj)

wi,j|αi,j| /
∑

(Pi,Qj)

wi,j. (12)

The analogous measure AAI is computed for image feature correspondences,
except that the angles are mapped into [0 . . . π/2) prior to computing AAI to
account for the possibility of contrast reversals [69].

6.3 Stability

Incorrect transformations tend to be less stable than correct ones, especially
when low inter-scan overlaps are allowed. Stability is measured using the trans-
fer error covariance computation, which was already used for region growth
in a previous stage (Sec. 5.4). A bounding box is placed in the moving scan
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around the points that have correspondences with non-zero weight. The trace
of the transfer error covariance ΣY′

i
(Eqn. 10) is then maximized over this box,

with the result being the stability measure, ST. The trace is used because it
captures the uncertainty in any direction.

6.4 Boundary Alignment Check

While the four accuracy measures and the stability measure are strong indi-
cators of correctness, they still produce false positives, most notably in scenes
involving repetitive structure. A common example is aligning two scans of the
face of a building that has regularly-spaced windows. An estimated alignment
that produces a shift in the scans by the inter-window spacing looks very sim-
ilar to a correct alignment. If we could assume that there were no changes in
the scene between the two scans, then this misalignment could be caught by
Huber’s visibility test [32]. Since we are considering the potential for structural
scene changes (along with small overlap and substantial viewpoint changes),
a more sophisticated test is needed.

The test we propose is based on surface boundaries, detected as part of the
preprocessing step (3.1). We do not take the natural step of establishing cor-
respondences between boundary points in the two scans, in large part because
viewpoint differences may cause a boundary (a depth discontinuity) in one
scan to be missed in the other. Instead, each sampled boundary point, j, from
the moving scan is tested as follows (see Figure 8). Two boxes are formed: Bi

on the surface interior, where samples occur, and Be on the surface exterior,
where no points are measured. If the two scans are properly aligned, then
when Bi is mapped into the fixed scan, it should contain fixed-scan points,
whereas when Be is mapped into the fixed scan, it should be empty. When
both mapped boxes contain fixed-scan points, this is evidence of a misalign-
ment, whereas when both are empty, this is evidence of either a misalignment
or a structural change. Since there is one box per boundary point and the
spacing between boundary points is at the sampling resolution of the scanner,
upwards of several thousand boundary boxes are formed per scan, allowing for
an aggregate computation of our boundary measures and tolerance to changes
and transient objects that may affect the measure in a small number of boxes.

Here are details on the formation of surface interior box Bi and exterior box
Be for one boundary point. The axes of Bi are the estimated surface normal
at the boundary, the boundary chain direction (lies on the estimated surface),
and a third axis perpendicular to the other two. This construction ensures the
inclusion of sample points. For Be, one axis is parallel to the edge tangent,
one is parallel to the scanner’s line of sight at the boundary, and the third
is perpendicular to the other two. By orienting Be in this way, it should be
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empty in the fixed scan regardless of the type of boundary — a true surface
discontinuity, a crease edge, or a location where the surface is tangent to the
scanner’s line of sight. The boxes are both wide enough (in the tangential
directions) to accommodate sample spacing in the fixed scan and tall enough
to account for noise (8).

Three different boundary point counts are formed: N is the total number of
boundary points tested; Ni is the number of boundary points, j, such that
j has at least a minimum number of fixed points in its interior box Bi after
mapping into the fixed scan; Nie is the number of boundary points, j, such
that (a) j is counted in Ni and (b) j’s exterior box Be is also (nearly) empty in
the fixed scan. 1 In other words, boundary points counted in Nie have occupied
interior boxes and empty exterior boxes in the fixed scan. The three counts
are used to form two boundary measures for a given alignment: BT1 = Nie/Ni

and BT2 = Nie/N . Ideally, both scores will be near 1, but when there are
substantial structural changes between scans, BT2 may be low. On the other
hand, BT1 cannot be used alone because severe misalignments can cause it to
be high and BT2 to be very low. We let the linear classifier determine the trade-
off between these measures (and the other decision measures) automatically.

FixedFixed

Moving

Occlusion
Boundary

Fixed

Occluded
without

Boundary

Moving Moving

ViolationNo Violation

Bi

Be

Bi

Be

Bi

Be

Fig. 8. Construction and use of the boundary test boxes. In the moving scan (top
left), Bi, the interior box, is aligned with and centered on the surface near to but not
overlapping the boundary, and Be, the exterior box, is aligned with the line-of-sight
direction and centered at the depth of the boundary point. When these boxes are
mapped into the fixed scan (top right), Bi should contain surface points and Be

should be empty, even when the location corresponding to the boundary point is
along an edge and the surfaces on both sides of the edge are visible. The bottom left
and right images illustrate cases with no violation and violation of the boundary
constraints, respectively.

1 Be will not always be completely empty, even for correct boundaries, because of
boundary curvature and because scanners tend to produce points that interpolate
between foreground and background surfaces at discontinuities.

22



6.5 Classification

For each rigid transformation parameter estimate produced by the refinement
procedure, seven measures are computed from the parameters, the parameter
covariance matrix, the matches and the boundary points — the two positional
accuracy measures, PAR and PAI , the two orientation accuracy measures, AAR

and AAI , the stability measure, ST, and the two boundary measures BT1 and
BT2. These are each computed with neither re-matching nor re-estimation.
The values are input into a linear classifier, which outputs a binary accept /
reject decision. This classifier is trained using the Ho-Kashyap algorithm [18]
on the data described below.

7 Experimental Evaluation

Our experiments evaluate both the overall effectiveness of the algorithm and
the importance of the individual algorithm components. We collected a set of
14 test scan pairs exhibiting many challenging aspects of range scan registra-
tion, including three with substantial illumination differences, four with large
changes in viewpoint, four with changes in structure, two having low overlap,
one taken of an entirely planar scene, and three dominated by repetitive struc-
tures. Only three of the scan pairs, all taken outdoors, would be considered
“easy”. Two “hard” pairs and their resulting alignments are shown in Fig. 1,
and four other “hard” pairs are shown in Fig. 9. The remaining eight pairs are
shown in Fig. 10. The abbreviations indicated in the figures are used in the
result tables below. Six of the 14 pairs were used for tuning the initialization
and refinement parameters. Six pairs are also used for the training involved
with the decision criteria (Section 7.3). There were no substantial differences
in the results for the training and test sets, so the results are lumped together
for the sake of brevity.

The range scans were collected using a Leica HDS 3000 scanner. The scans in
our experiments were typically acquired at 2-5 cm linear sample spacing on
the surfaces. The RMS error of the measured points is 2-4mm, independent of
depth, on matte planar surfaces. The scanner acquires intensity images using
a fixed, bore-sighted camera and a rotating set of mirrors to effect different
camera orientations. The resulting images overlap to cover the field of view
of the scanner. Our algorithms automatically partition the images to avoid
redundancy in the intensity keypoints and features.

For each scan pair we are able to manually verify alignments. Any transfor-
mation estimated by our algorithm may then be compared to this manually-
verified alignment by computing the RMS mapping error between the two
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(a)

(b)

(c)

(d)

Fig. 9. These are the (a) BioTech, (b) Sci Center, (c) Lab Changes, and (d) M301
into M336 scan pairs. Scan pairs (a) and (b) have highly repetitive structure; the pair
(b) is further complicated by illumination differences. Scan pair (c) demonstrates
the algorithm’s ability to register scans with many changes; the right-hand picture
is tinted to show the changes between the scans. The only overlapping parts between
the two original scans are the walls and the water cooler. Scan pair (d) demonstrates
the registration of the inside of a room and the same room seen through a doorway.

transformations taken over the interscan region of overlap. When the RMS
error is within a few standard deviations of the sensor noise, the estimated
transformation is considered “correct”.

As described in Figure 2, the algorithm runs until either (a) one estimate is
refined and verified by the decision criteria, or (b) M initial estimates have
been tested (for our experiments M = 50). In the latter case, the scan pair is
rejected. For the purposes of evaluating the performance of various stages of
the algorithm, all of the top M initial estimates were refined and run through
the verification procedure, as described below.

Overall, the algorithm aligned all 14 scan pairs correctly, and verified 13 of
the 14 registrations as correct. The decision criteria were unable to verify the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10. (a) JEC – highly repetitive structure and large viewpoint difference. (b)
Whiteboard – a flat scan that demonstrates the power of image-feature matching.
(c) VCC West – easy pair, but has noisier images due to rain during the scanning.
(d) VCC South – illumination differences and smaller overlap. (e) VCC North –
easy pair, has one main overlapping face that provides many good initializations.
(f) Lab Regular – indoor scan with varying viewpoints and smaller overlap. (g) Lab
Large – indoor scan with varying viewpoints. (h) M336 into M301 – a difficult scan
pair, it has a large sample spacing difference between scans, also a doorway blocks
part of one scan’s view.

correct alignment of the BioTech scans. In the fixed scan the front face of the
building is almost perpendicular to line of sight, resulting in sample spacing
of nearly half a meter on the far part of the face. This led to incorrectly high
values in the accuracy and stability measurements.

7.1 Initialization and Keypoint Matching

The first round of experiments focuses on the effectiveness of keypoint match-
ing, including three enhancements: (a) discontinuity filtering, (b) computing
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each keypoint descriptor on the backprojected surface plane rather than in the
original image, and (c) using physical scale in keypoint matching and filter-
ing. Each of these techniques may be added or removed from the algorithm,
so we can explore the effectiveness of each separately. In our evaluation, the
top 50 matches are examined for each test pair and each is marked “correct”
or “incorrect” based on applying the manually-verified transformation to the
backprojected moving image keypoint and comparing to its matched, back-
projected keypoint in the fixed scan. If the positions are within 4 standard
deviations, and both the gradient directions and surface normals are within
15 degrees, the match is considered correct.

The results for all scan pairs are shown in Table 1. The scan pairs are ordered
top-to-bottom, by increasing difficulty, with the last row providing the totals
across all scan pairs. The columns of the table show all combinations of acti-
vating the enhancements, with the left showing all enhancements on and the
right showing all enhancements off. The abbreviations used in the table are
(a) “disc flt” for discontinuity filters, (b) “aff-dscr” for computing the affine-
mapped descriptor on the planar surface of the scan, and (c) “phys scl” for
using the physical scale in matching.

Several inferences may be drawn from the Table:

• The overall percentage of correct matches on our data set increases by 33%
using all of the enhancements, compared to using no enhancements. This is
less than we expected overall.
• The number of correct matches varies dramatically between scans, reflecting

our intuition that some pairs are quite easy, while others are very difficult.
• As can be seen by comparing the left four columns with the right four

columns, discontinuity filtering has very little overall effect on the effective-
ness of keypoint matching. We attribute this to the simple observation that
the descriptors for keypoints found along depth discontinuities change so
much between views that they are unlikely to be matched anyway.
• While the general trend is an improvement in the number of matches when

the other two enhancements are added, this is not monotonic for all scans
(e.g. “Lab Normal”).
• Finally and most importantly, the enhancements do have an impact for the

most difficult scans shown at the bottom of the table. The enhancements
produce enough keypoint matches to allow our algorithm to align these
scans accurately, even when a random-sampling search [8,57] would fail due
to an insufficient number and density of correct matches.

We have three possible explanations for why the improvements are not more
substantial. First, when computing scale we do not adjust for affine distortions
in the original image computation, as in [46]. We have avoided this expensive
computation in favor of simpler enhancements. Second, since the ranking of
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the matches is based on relative descriptor distance, improvements in the
descriptor computation and associated reductions in descriptor distances do
not necessarily lead to better rankings. Third, the quality of images taken by
the scanner is not as high as ordinary digital images and varies substantially
with illumination (often with substantial glare), suggesting that there is a
limited range of potential improvements. Despite these concerns, the overall
trend, especially for the difficult scan pairs where the enhancements matter
most, is towards improved performance. As a result, we use all enhancements
in both our remaining tests and in our complete algorithm.
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VCC West 46 40 42 35 46 40 44 36

Whiteboard 46 46 45 45 46 46 45 45

VCC North 42 34 38 27 47 34 37 27

VCC South 41 33 28 27 40 32 28 27

Lab Large 32 24 28 20 33 24 28 20

MRC Pk lot 28 28 22 22 25 24 15 17

Lab Normal 11 12 17 18 11 12 17 17

Lab Changes 13 13 11 14 15 13 11 14

M301 into M336 13 10 10 10 13 10 10 10

M336 into M301 5 3 7 3 5 3 7 3

BioTech 5 4 1 1 2 3 1 1

Sci Center 3 3 1 1 3 2 1 0

JEC 2 2 2 0 1 2 0 0

DCC 2 1 1 0 2 1 0 0

TOTALS 289 253 253 223 289 246 244 217
Table 1
Number of correct keypoint matches among the first 50.
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7.2 Refinement

In evaluating the refinement algorithms, we focus on the effectiveness of (a)
starting registration from a single keypoint match, (b) region growth during
estimation and refinement, and (c) using image features in the registration
process. In testing these, we ran the refinement process on all 50 initial key-
point matches.

The results are summarized in Table 2. The first column of results is the
number of “correct” keypoint matches in the top 50 and is included as a basis
for comparison. The second column, “no reg grow” indicates that there is no
region growth and no image feature correspondences are used. In other words,
robust ICP is run scan-wide starting from the initial estimate generated from
the single keypoint match. The third column indicates that image feature
correspondences were added, but region growth was still not used. In the
fourth and fifth columns, region growth was added.

As before, we make several important observations about these results:

• Clearly, the addition of both image features and region growth substantially
improves the number of successful alignments, with region growth playing
the more substantial role. More importantly, adding region growth allows
the alignment of three of the most challenging pairs. However, we note that
robust ICP initialized from a single match can accurately align the scans in
a surprising number of cases.
• Using image feature correspondences is most helpful on scans involving sub-

stantial planar regions (“Whiteboard” and “Lab Changes”). In most other
scans, the effect of image features is negligible. This is partially due to the
fact that variations in surface orientation generate constraints in similar
directions to the image-feature constraints, making the image features less
necessary. Another reason is that the low image quality renders the image
feature constraints less reliable.
• The total number of successful final alignments is larger than the number of

correct keypoint matches. This means not only that nearly all initializations
from these matches are refined to correct final estimates, but also that some
matches that are too far off to be considered correct are actually refined to
a correct final estimate. More than anything, this demonstrates the power
of using image features and region growth during the refinement stage.

An additional experiment was performed to determine how well the initial-
ization and refinement stages perform as the amount of noise in the scans
increases. We chose five scan pairs representing a range of difficulties, and
added independent, normally-distributed noise to each measurement along its
line of sight. We then ran the algorithm on the resulting scans. Figure 11 plots

28



#
kp

t
m

at
ch

es

no
re

g
gr

ow

no
re

g
gr

ow
+

im
g

ft

re
g

gr
ow

re
g

gr
ow

+
im

g
ft

VCC West 46 23 20 47 47

Whiteboard 46 18 36 12 38

VCC North 42 27 19 43 43

VCC South 41 11 21 42 42

Lab Large 32 29 16 32 31

MRC Pk lot 28 9 19 29 30

Lab Normal 11 11 15 19 17

Lab Changes 13 2 14 6 14

M301 into M336 13 16 15 19 18

M336 into M301 5 4 7 6 7

BioTech 5 0 0 1 2

Sci Center 3 0 0 3 3

JEC 2 2 2 2 2

DCC 2 0 0 2 3

TOTALS 289 152 184 263 297
Table 2
Number of correct alignments produced by the refinement stage when applied to
the top 50 keypoint matches.

the number of initial estimates in the top 50 that the algorithm refines to a
correct transformation as the standard deviation of the added noise increases
from 0 to 5 cm (recall that the noise in the scanner is 2 mm). The results
clearly demonstrate that adding noise to the scans does not substantially af-
fect the number of successful registrations. There is a noticeable downward
trend for several of the scan pairs, mostly on the easier pairs. However, since
the algorithm only needs a single success, the decrease in the easier scans is
insignificant. Furthermore, the more difficult scans were not greatly affected
by the noise, because their difficulty lies in initialization and not in refinement.
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Fig. 11. Investigating the effect of additional noise on the performance of the algo-
rithm. The number of registration successes in the top 50 initializations is plotted
as a function of the standard deviation of the added noise variance for five repre-
sentative scan pairs. The additional noise has little effect on the overall power of
the algorithm because only a single success is needed per scan pair.

7.3 Decision

A linear discriminant combining the seven decision measures was trained using
six of the scan pairs and the top 50 keypoint match refinements, each compared
to the manually-verified transformation. The results were then tested on all 14
pairs, again using the top 50 matches and refinements for all pairs as the basis
for testing. Out of the resulting 700 alignments, there were 3 false negatives,
no false positives, and 294 true positives. Unfortunately, as discussed above,
two of the false negatives are on the BioTech scan and these are the only two
alignments. Therefore, we cannot claim that this scan was aligned.

When one or more of the measures is removed and the linear discriminant is
retrained, performance degrades. Results for these experiments are summa-
rized in Table 3. The first four rows of results measure the performance of
the basic building blocks of the decision criteria, including from top to bot-
tom (1) using position accuracy, PAR only, (2) using both range criteria, PAR

and AAR, and the stability measure, ST, (3) using the image-feature-based
criteria, PAI and AAI , and the stability measure, ST, and (4) just using the
boundary measures, BT1 and BT2. Row (1) shows that using the alignment
accuracy measure alone produces a significant number of false positives, while
row (4) shows that the boundary measures alone have nearly equivalent per-
formance to alignment accuracy. Both are insufficient overall. The remaining
rows show, in order, (5) leaving out only the boundary measures, (6) leaving
out only the image-feature measures, (7) leaving out only the range measures,
and (8) using all measures. It is clear from these results that all criteria are
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Table 3
Verification results of total number of false positives, false negatives, true positives,
and true negatives over all scans in Top 50.

Measures Used False Pos. False Neg. True Pos. True Neg.

PAR 19 34 263 384

PAR, AAR, ST 2 106 191 401

PAI , AAI , ST 68 44 253 335

BT1, BT2 22 43 254 381

all but BT1 and BT2 4 8 289 399

all but PAI , AAI 8 7 290 395

all but PAR and AAR 28 7 290 375

all 0 3 294 403

needed, including both the image-feature measures and boundary measures.
In addition, it is interesting to note that the image features play a significant
overall role, as can be seen by comparing rows (6) and (8) of the results.

7.4 Performance

The time that it takes to align two preprocessed scan pairs is mainly dependent
on the rank of the first initialization that can be refined to a verified alignment.
For our experiments, 9 of 14 scan pairs are correctly aligned and verified on
the first ranked initialization. The other four first successes are on the 2nd,
6th, 8th, and 37th ranked initializations. It should be noted that many of the
failure refinements before the first success are quickly terminated because of
extremely poor initialization.

We evaluated the performance of the algorithm on our full dataset using a
PC with a 3.2GHz Pentium 4 processor and 2 gigabytes of RAM. The sizes
of the scans range from 13K to 1.2M points and 2K to 73K intensity features.
The preprocessing step of the algorithm is currently the slowest, taking from
2.5min up to 10.7min per scan, largely because of large number of overlapping,
redundant and sometimes useless images produced by the scanner — we are
currently working on dramatic speed improvements here. The keypoint match-
ing and initialization calculation takes on average 26.4s. The average running
time of a single registration and verification over all scans is 11.5s with an
8.7s standard deviation. Finally, the median time from initialization until the
verification detects a successful alignment is 8.7s. Of the four scans whose first
success is not on the first keypoint match the total registration times are 1.9s,
2.7min, 1.5min, and 10.2min. Many steps of the algorithm can be trivially par-
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allelized, which would decrease registration time on multiprocessor machines,
especially when the first successful alignment is poorly ranked.

8 Conclusion

We have presented a three-stage algorithm for fully automated 3D rigid reg-
istration of combined range/intensity scans that is extremely effective in the
presence of substantial viewpoint differences and structural changes between
scans. The algorithm succeeds through the combination of (a) the matching
of intensity keypoints that have been backprojected onto range scans, (b) the
initialization of registration estimates from single keypoint matches, (c) an es-
timation and refinement procedure that combines robust ICP, region growth
and a novel combination of intensity feature and range point correspondences,
and (d) a decision criteria that includes measures of positional and orienta-
tion alignment accuracy, stability, and a novel boundary-based measure, all
combined using a linear discriminant trained from a subset of the test data.

While the primary contributions of our work are the overall algorithm and
its demonstrated effectiveness, we also have several more specific contribu-
tions, including (1) an experimental evaluation of the effectiveness of keypoint
matching based on backprojected surface information, (2) adapting the Dual-
Bootstrap approach — starting from preliminary alignments between small
regions of the data — for range scan registration, (3) a novel method for
combining constraints based on intensity edges and on range points during
estimation, and (4) novel, sophisticated decision criteria for automatically de-
termining when two scans are well-aligned despite structural changes.

In terms of the individual stages of our algorithm, we can conclude from our
experiments that:

• Matching of backprojected keypoints which have been affine-corrected based
on the 3D planar surface is an improvement over matching the keypoints
based on image information algorithm alone. However, the improvements
are not as dramatic as might be expected. The most important effect is in
the most difficult scans where only a small number of correct matches are
obtained. Further improvements may be possible using a better estimation
of viewpoint-invariant scale.
• Region growth and the use of image-feature correspondences both play an

important role in registration, especially on scans of near-planar surfaces
and the scan pairs involving the most difficult viewpoint differences and
structural changes.
• The combined decision criteria produced no false positives on our data set

and only three false negatives out of 700 tests. While the accuracy measures
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are important, our novel boundary measures play a crucial role, especially
on repetitive structures and scans involving structural changes.

As an additional note, we have shown the important role that image features
play at all stages of the alignment process, including initialization, refinement
and verification. In each stage, backprojected features contribute to the algo-
rithm’s success despite substantial viewpoint and/or illumination differences
between scans.

Finally, as compared to other approaches, our experiments, including the ad-
dition or removal of specific features of our algorithm, have shown that (1)
on particularly challenging scan pairs, using matching of backprojected key-
points alone [8,57], perhaps followed by robust ICP, is not enough to register
the scans effectively, (2) just running a robust version of ICP [6, 14, 17, 70] ,
initialized using a transformation obtained from a keypoint match, does not
converge to the correct solution reliably, and (3) more sophisticated decision
criteria [32] than just using alignment error are indeed necessary.

The weakest point of our algorithm is initialization, since we have shown
that once an initial estimate is obtained, region growth and re-estimation
nearly always converge to a correct alignment. One area of future investigation,
therefore, is new methods for initialization, most likely using range data in
addition to image data [33, 40]. Preliminary results along these lines were
presented in [37]. Aside from initialization, the next stage of our research is
extending the algorithm to multiscan registration and automatic detection of
structural changes. Here the decision criteria will be even more important,
as shown in [32] for static scenes, perhaps necessitating more sophisticated
measures and non-linear classifiers.

A Modeling Variances in Correspondences

Recall that the variance in a scan point correspondence is modeled as σ2
i,j =

k2
c (σ2

i + σ2
j ), with σ2

i and σ2
j being the previously-estimated feature position

variances and kc being an unknown constant multiplier (Equation 8). We use
the fact that kc is the same for all correspondences to estimate its value for each
set of correspondences and transformation parameters. For a correspondence
between Pi and Qj, let di,j = (T(Pi; Θ̂) − Qj)

>ηj be the signed normal
distance measured in the fixed scan’s coordinate system. Suppose the values
of di,j are each normally-distributed, with variance σ2

i,j. Although σ2
i,j varies

across the matches, the values di,j/
√
σ2

i + σ2
j are i.i.d. with variance k2

c . Since kc

is the only unknown, we can form the set of values di,j/
√
σ2

i + σ2
j and robustly

compute the variance to estimate kc. In the very first iteration of matching in
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the initial bootstrap region, the variance of di,j/
√
σ2

i + σ2
j is estimated using

the median absolute deviation scale estimator [54, 64]. Subsequently, for the
first match set for each region, Ωt, after weights have been calculated, kc is
re-estimated as

k2
c =

∑
(Pi,Qj)wi,jd

2
i,j/(σ

2
i + σ2

j )∑
(Pi,Qi)wi,j

.
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