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Abstract 

Recently, this group published fast algorithms for automatic tracing (vectorization) of the vasculature in live 

retinal angiograms, and for the extraction of visual landmarks formed by vascular bifurcations and crossings. 

These landmarks are used for feature-based image matching for controlling a computer-assisted laser retinal 

surgery instrument currently under development. This paper describes methods to schedule the vascular tracing 

computations to maximize the rate of growth of quality of the partial tracing results within a frame cycle. There 

are two main advantages. First, progressive image matching from partially extracted landmark sets can be faster, 

and provide an earlier indication of matching failure. Second, the likelihood of successful image matching is 

greatly improved since the extracted landmarks are of the highest quality for the given computational budget. 

The scheduling method is based on quantitative measures for the computational work and the quality of 

landmarks. A coarse grid-based analysis of the image is used to generate seed points for the tracing computations, 

along with estimates of local edge strengths, orientations, and vessel thickness. These estimates are used to define 

criteria for real-time preemptive scheduling of the tracing computations. It is shown that the optimal schedule can 

only be achieved in perfect hindsight, and is thus unrealizable. This leads to scheduling heuristics that 

approximate the behavior of the optimal algorithm. One such approximation produced about a 400% 

improvement in the quality of the partial results, as compared to random scheduling. The resulting algorithm can 

be readily implemented on conventional and multiple-processor (MIMD) systems, and is being applied to 

computer-assisted laser retinal surgery.  
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1. Introduction 

 This work addresses problems arising in the real-time extraction of landmarks (crossing and branching 

locations of the vasculature) from image sequences of the human retina [1]. This is done in the context of 

computer-assisted instrumentation for laser retinal surgery [2,3,4,5]. Fig. 1a shows a sample image frame, and 

Fig. 1e shows the vascular landmarks (crossovers and bifurcations) for this sample frame. These landmarks are 

matched for image registration in the context of spatial mapping and real-time spatial reckoning [6,3,7] relative to 

a previously constructed mosaic map of the entire retina [8]. This is an instance of a “hard” real-time system [9] in 

which the computations must be completed prior to a deadline, else the system is considered to have failed. A 

failure represents a loss of tracking, requiring the surgical laser to be switched off. System performance degrades 

with an excessive number of failures. The computational deadlines are dictated by the frame rate of the imaging 

camera (usually about 33ms/frame). Within this deadline, two computations must be completed: landmark 

extraction, and landmark-based image matching. For a given computer system, the computational budget is fixed 

within this deadline. It is desired to maximize the probability of a successful image match within this budget. 

The process of landmark extraction is illustrated in Fig. 1 and the associated computational budgeting issues 

are shown in Fig. 2.  One-dimensional image analysis on a coarse grid (Fig. 1b) is used to detect seed points for a 

procedure that recursively traces the vasculature. The landmarks are detected from the traces. The left and right 

columns of Fig 2 show the partial results of two different tracing procedures, captured at 8%, 28%, and 53% of 

the total computational effort [1].  The only difference between the two procedures is the order in which the vessel 

segments are traced; they use the same algorithm, the same total amount of computation, and produce the same 

final result (Fig. 1e). Although for each row the two partial results are obtained at the same amount of 

computational effort, the partial results in the right column are far more valuable, because they have more 

numerous and prominent landmarks. The goal of this work is to discover and elucidate the design principles for 

achieving an early yield of high-quality landmarks, i.e., a sequence of partial results more like the right column of 

Fig. 2. 

Increasing the number and quality of landmarks can greatly improve the likelihood of a successful image 

match [10] for a given computational work. Given a high-quality partial result, such as the one in Fig. 2b, image 

matching can be attempted from the partially extracted landmark sets. If this is successful (i.e., sufficient 

confidence exists in the result), then the overall system can be much faster. Even if this is unsuccessful, it can 

form the basis for a better subsequent attempt. The frame cycle time can be sub-divided into a series of 

milestones, and the performance of the matching algorithms monitored at each milestone. Failure to reach set 

milestones can provide early indication of conditions such as poor image quality (images that are dim, saturated, 

out of focus, affected by glare, etc.).  

The idea of utilizing partial results relates to the concept of imprecise computations as proposed by Lin et al. 

[11] within the real-time scheduling literature. An imprecise computation is a task with two parts: a mandatory 
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part that must be executed fully, and an optional part, that can be computed to the extent possible given the 

computational resources. A “correctness function” is defined to measure the quality (e.g. precision) of the system 

output as a function of time (processor cycles). Computation beyond the mandatory part results in monotonic 

increase of the correctness. Therefore the precision of the final output is related to the amount of computation. 

Such a formulation is attractive for designing predictable real-time systems that must handle variable amounts of 

computation [12,13,14,15,16,17].  This is exactly the situation faced in the tracing procedure where the frame 

cycle and application demands impose a deadline, but the amount of computation varies with the content and 

quality of the image data. The initial grid analysis and the extraction of a minimal landmark set (3 for affine 

indexing) represent the mandatory part of the computation, while extracting the remaining landmarks is the 

optional part. Our correctness measure is the cumulative quality of the landmarks, and our goal is to increase the 

correctness measure as quickly as possible. This work represents the first step towards realizing predictable real-

time computer vision systems for spatial referencing, and it is the first time that the principles of imprecise 

computation have been used for medical image sequence analysis. 

2. Background to the Present Study 

The prior literature describes two approaches for extracting vascular landmarks in angiograms. The first 

approach requires extensive pixel processing, and generally relies on adaptive segmentation, followed by 

skeletonization and branch point analysis, or interest operators [e.g., 18,19,20,21]. Typically, this requires 

specialized hardware [22], scales poorly with image size, and does not provide useful partial results. The second 

approach [1,23], exemplified by this paper, is called vectorization, or exploratory tracing. This is much faster (e.g. 

video frame rates), more adaptive, and more practical for implementation on conventional and parallel MIMD 

computers [24].  The speed of this method can be appreciated by noting that computation of Sobel kernels at each 

image pixel, which is a computation representative of part of the processing in the first approach, requires 440ms; 

by contrast, the entire tracing computation (Fig. 1e) requires 200ms on the same image (Fig. 1a).  Both results 

were obtained on 100MHz Silicon Graphics Indy using the same compiler settings. Vectorization also requires the 

fewest number of parameter settings, scales well with image size, and provides useful partial results.  

The exploratory tracing algorithm, detailed in [1], is briefly summarized here. It proceeds in three stages. 

The first stage explores the image along a grid of pixel-wide lines (Fig. 1b), estimating the frame contrast and 

brightness levels, and seeking edges. A 1-D edge operator is applied, followed by local non-maximum 

suppression. The resulting points, illustrated in Fig. 1c, are termed edge pixels, or "edgels". In the figure, the 

small circles and squares mark the positions of the left and right edgels, respectively. The midpoint (marked 

white) of the strongest left and right edgels (EL and ER) is extracted as a seed point for tracing. These points are 

overlaid on the grid in Fig. 1b. 

In the second stage, false seed points are filtered out by testing for the existence of a pair of sufficiently 

strong parallel edges. For this, a set of directional kernels [1] is applied to the seed’s neighboring points along the 



Page 4 of 4 

grid line, and the two strongest responses are found. The initial point is filtered out if the two strongest responses 

do not both exceed a sensitivity threshold, or if the directions of the two strongest edges are not sufficiently 

similar (within ±22.5°). On average, about 40% of the initial points are filtered out by this procedure.  

The third stage is a sequence of recursive tracing steps illustrated in Fig. 1d. These are initiated at each of the 

filtered seed points, and proceed along vessel centerlines using an update equation of the following form: 
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where kp  and 1+kp  denote the current and new (x,y) locations of the trace, α  is a step size, ks  is an integer 

index specifying one of N angular directions (e.g., N = 16), and kβ  is a lateral displacement that centers the new 

point kp  on the vessel. The angular direction is estimated using a set of N directional kernels that are applied 

separately to the left and right boundaries of each vessel. In Fig. 1d, this is illustrated for a pair of intersecting 

vessels. The left and right directional kernels at 0° and 45° are shown. In equation (1), ks  is estimated as the 

angle at which the correlation kernels produce the highest response. These maximum responses are computed by 

performing a local search along a line perpendicular to the current trace. The reader is referred to [1] for details, 

including a description of algorithms for pooling the traced segments, avoiding repeated searches, detecting 

branch points, crossovers, and end points (Fig. 1e), and correction of traces near branch points. Also described in 

this reference are methods for automatic estimation of the grid size used for initial exploration, the threshold used 

to terminate tracing, and the step size α .  

3. A Quantitative Basis for Scheduling 

The vascular tracing algorithm [1] generates a sequence of partial results, each consisting of traced vascular 

fragments and detected landmarks. The goal of the present work is to schedule the tracing computations to 

produce an early harvest of numerous high-quality landmarks (again, compare Fig. 2a and Fig. 2b). Designing the 

scheduling strategy requires quantifying both the quality of each partial result, and the computational work 

required to produce it. 

Quality of a Partial Result. A first-order evaluation of the quality of a partial result is based on the number 

and individual quality of vascular landmarks. The quality of an individual landmark can be quantified based on 

the prominence of the intersecting vessels and their contrast, as follows. Suppose a single landmark is formed by 

the intersection of m vessel segments. Let tp be the estimated thickness of segment p , and sp a measure of its 

edge strength. Then, the quality of the landmark can be measured as  

            pp

m

p
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=1
.           (2) 
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The edge strength sp is estimated using the directional correlation kernels described in our earlier work [1] 

and summarized in the previous section. The quality of a partial result is measured simply by summing the 

qualities of the individual landmarks constituting it. In future work, it may be possible to incorporate more 

discriminating criteria, such as the spatial distribution and uniqueness of landmarks [10]. 

 

Quantifying the Computational Work. One objective method to quantify computational work is to 

count the processor cycles. However, such a measure is necessarily dependent upon a specific combination of 

processor, compiler, and other implementation details. An extensive profiling analysis [24] revealed that the vast 

majority of the processor cycles were expended on computing the response of local correlation kernels [1]. This 

suggests a simple system-independent measure of computational work: simply count the number of correlation 

kernel computations. We use the variable w to denote this count.   

The quality and work measures described above can be used to monitor the progress of the tracing 

computations, as follows. The tracing of the vasculature is carried out through a sequence of computations, with 

the work (as measured by counting correlation kernels) denoted w1, w2,…, wN, that produce a sequence of non-

negative incremental results q1, q2,…, qN . The quality of the partial result at the completion of wk is given by: 

                   ∑
=

=
k

n
nk qQ

1
,            (3) 

where qn is the quality measure defined in equation 2 for the thn landmark. The cumulative computational effort 

used to produce the above partial result is given by: 

               ∑
=
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k
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1
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At this point some observations may be made.  

• The sequence of partial results is always of monotonically improving quality, i.e., kk QQ ≥+1 . In the 

terminology of imprecise computation, the tracing algorithm is an “anytime algorithm” [25]. 

• The amount of vasculature in the (finite-size) image is finite. Thus, a definite end point exists for the 

tracing, and the last partial result also represents the complete result. For a given image, and 

algorithm settings such as the grid size and sensitivity, the quality of the complete result, denoted 

totalQ , and the total computational work totalW , are both finite and fixed.  

• Finally, the tracing of a vascular segment is independent of segments that were traced in previous 

steps, so the order of tracing can be changed without affecting the final result.  

The above properties suggest that, in principle, one could divide the vasculature arbitrarily into vessel 

segments and decide the order in which the vessel segments are traced. Equivalently, a scheduling algorithm 

makes specific decisions regarding the starting, stopping, and restarting of the tracing, and choice of seed points. 
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An optimal scheduling algorithm makes decisions that maximize the rate at which the quality of partial results 

improves. 

4. The Optimal Schedule 

The monotonically improving quality of a partial result can be described by a growth function Q(W). This 

function does not have a closed-form expression, and is represented by an empirically derived Q vs. W curve. 

Now, the quality and total work (Qtotal and Wtotal ) are different for different images. To enable meaningful 

comparison and averaging across images, it is advantageous to normalize Q and W by Qtotal and Wtotal , 

respectively. With this in mind, the question of interest is: given a partial computation 1/ ≤totalk WW , how can 

the tracing computations be scheduled so that the normalized quality of the corresponding partial result, 

totalk QQ / , is maximized for every k. Another way to view this is maximizing the area under the normalized Q vs. 

W curve. The fully optimal scheduling algorithm must perform this maximization globally, for every partial result 

– a daunting task. 

In order to maximize the optimality criterion just described, the scheduling algorithm must somehow 

perform just-sufficient tracing for detecting each of the landmarks, thereby minimizing the amount of work done. 

Simultaneously, it should trace around the highest-quality landmarks first, thereby maximizing the quality 

measure. Unfortunately, achieving this objective requires prior knowledge of the very traces that are sought  - an 

inherently impossible task. This realization leads to the inevitable conclusion that an optimal schedule can only 

be computed in hindsight, or equivalently, with perfect foresight. In other words, the optimal schedule is a 

hypothetical one. Even with perfect foresight, computation of the optimal schedule is a difficult global 

combinatoric optimization problem; for each value of totalk WW ≤  one must select a set of landmarks so that the 

sum of their computational work does not exceed kW , and the sum of their qualities is the maximum. The 

following section describes a useful approximation of the optimal schedule based on perfect foresight. 

4.1 An Approximation of the Optimal Schedule Based on Perfect Foresight 

The quality growth curve Q vs. W can be estimated for a hypothetical optimal algorithm. First, the entire 

vasculature in the image is traced, and the quality of each landmark is computed. During the tracing, the 

computational work for each vascular segment is recorded. From these recordings, the computational work 

expended in computing each landmark is estimated using the following rules (illustrated in Fig. 3a). 

1. If there are no landmarks between a landmark X and the end of the vessel, the work of tracing between X and 

the end of the vessel is attributed completely to this landmark.  

2. The work of tracing a segment connecting two landmarks X and Y is divided into two equal halves and 

attributed equally to these two landmarks. 
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Fig.3a illustrates a sample vessel structure on which the above rules are applied. Landmark X is formed by vessel 

segments a, b, & c, while landmark Y is formed by vessel segments a, d, & e. If the computational work for 

segments a, b, c, d, & e is denoted wa,  wb,  wc,  wd, & we, respectively, then the computational work for landmarks 

X and Y are estimated as acbX wwww 5.0++= , and aedY wwww 5.0++= , respectively. 

 The assignment of computational work to the landmarks is independent of the schedule - it depends only 

on the spatial structure of the vessel network. Note, however, that item 2 above represents a simplification: during 

the tracing, the work of tracing the segment is not necessarily evenly divided between the two landmarks.  

 The above data provide the basis for approximating the optimal schedule in hindsight. The approximation 

is based on the heuristic observation that the ratio of quality, Q, and work, W, is high when the quality is high and 

the work is low. Of course, the quality to work ratio Q/W is not unique in this respect and other functions may be 

used. 

 The incremental tracing with the largest value of q1/w1 is scheduled first. The quality of the partial result 

at this point is Q1=q1, and the computational work is W1=w1. Thenceforth, subsequent partial results are 

constructed according to the following recursion. Given a partial result with quality Qk and work Wk , the next 

item qk+1 is selected so that the new ratio Qk+1/Wk+1 is the highest, where Qk+1 is given by: 

  Qk+1= Qk + qk+1.                                                  (5) 

The corresponding computational work is similarly given by: 

                      Wk+1= Wk + wk+1.                                            (6) 

In Fig 3b, a plot of Q vs. W for the image in Fig 1a is shown. Also shown is the average of such curves for a 

diverse collection of 84 retinal images. These images were drawn from two clinics, and a published image 

collection on CD-ROM [26]. This set represents a benchmark for the present study. The optimal curves exhibit 

sharp increases at the beginning and a gradual flattening out to the maximum possible value. 

5. Realizable Sub-Optimal Methods for Scheduling Tracing Computations 

As noted above, the optimal scheduling algorithm is not achievable in practice since it requires prior 

knowledge of the very traces that are sought. This section describes methods that are realizable, and seek to 

approximate the optimal scheduling algorithm. The common basis for these methods is: (i) the exploitation of 

quantitative hints that are available during the initial 1-D grid search of the image for seed points (Fig. 1b), and 

(ii) methods to limit the computational effort.   

5.1 Exploiting Hints based on Edge Strength and Vessel Width Estimates 

The quality of a landmark as defined above (equation 2) depends on the edge strengths and widths of the 

intersecting vessel segments, suggesting that vessels with higher edge strength (denoted   s ), and larger thickness 

(denoted t ) should perhaps be traced first. Furthermore, since both these quantities are involved as a product in 

equation 2, their product, tsp ×=  is also interesting as a prioritization criterion. These observations are 
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consistent with visual assessments of retinal images, in which the major vessels not only have higher contrast and 

thickness, but also are longer, and hence likely to have more numerous intersections/bifurcations. The initial grid 

search for seed points is an attractive opportunity to estimate the edge strengths, thickness, and products thereof, 

of vessels (Figs. 1b& 1e, [1]). The methods are summarized below. 

1. Edge strength estimates { Ds1ˆ }: The 1-D edge strength Ds1ˆ  is defined as ][][),(1 jRiLjis D += , where L[i] 

and R[j] are the correlation responses at the left edgel, denoted i , and the right edgel, denoted j, to one-

dimensional kernels of the form [ ]T1,2,0,2,1 −−  and [ ]T1,2,0,2,1 −− , respectively.  

2. Vessel thickness estimates { Dt1̂ }: The 1-D estimate of vessel thickness, denoted Dt1̂ , is defined as 

ijt D −=1 , where i and j are the indices of the left and right edgels, as defined above.  

3. Strength-thickness product estimates { Dp1ˆ }: The strength thickness product Dp1ˆ  is computed 

straightforwardly as follows: 

DDD tsp 111
ˆˆˆ ⋅= .              (7) 

Interestingly, this product is less affected by the angle that a vessel makes with a grid line than the strength 

and thickness estimates individually, because the strength is underestimated and the width is overestimated. 

Suppose a vessel makes an angle θ with a horizontal grid line and has a true edge strength s. Then Ds1ˆ  is the 

following projection: 

θsin1̂ ss D = .              (8)  

Similarly, if the true thickness of a vessel is t, then the one-dimensional estimate is a projection given by 

θsin/1̂ tt D = .              (9)  

From the above equations, we have  

sttsp DDD == 111
ˆˆˆ .            (10)  

Prioritizing the seed points based on some combination of { Ds1ˆ , Dt1̂ , Dp1ˆ } is a reasonable strategy if choosing 

the strongest seed points will lead to tracing more prominent vessels early in the computation, leading to earlier 

detection of high-quality landmarks.   

Figs. 4a & 4b compare the impact of prioritizing the selection of seed points based on estimates of Ds1ˆ , Dt1̂ , 

and Dp1ˆ . These strategies are compared based on their quality growth curves (Q vs. W ), averaged over the 

benchmark collection of 84 retinal images. The graphs on the left column of Fig. 4 are based on an initial search 

grid of 25 lines each along the x and y axes on each image, whereas the graphs on the right-hand column are based 

on 40 lines per axis. All the values of Q’s and W’s are normalized by the maximums among all the strategies. For 

comparison, we also studied methods that (i) select seed points randomly; and (ii) represent a reverse 
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prioritization of seed points based on the strength-thickness product. The last case is indicative of the worst-case 

scenario, and is therefore of considerable engineering value. 

The graphs in Fig. 4 indicate the following trends among prioritization schemes. The scheme based on 

prioritizing by Dp1ˆ  has one of the fastest growth rates on the quality of partial results. For the same partial 

computational work W, it has the largest quality of partial result among all curves. The random scheduling scheme 

is much worse, and the reverse scheduling scheme is the worst among all schemes. The prioritization scheme 

based on edge strength Ds1ˆ  is almost the same as the one based on product of strength and width, Dp1ˆ . The 

prioritization based on Dt1̂  was mediocre, probably because the vessel thickness estimates are not as reliable as 

edge strength estimates. Overall, these results indicate some of the benefits of scheduling, even when it is based 

on rudimentary 1-D measurements performed at seed points. 

Comparison of Fig. 4a and Fig. 4b illustrates the impact of the grid density. Fig. 4b, with the finer grid, has 

more initial points detected. The majority of the (more numerous) initial points are on shorter and weaker vessels 

that are missed by the sparser grid in Fig. 4a. Hence, the quality values of the initial points are more diverse, and 

the effect of prioritization is more pronounced. This leads to a larger spread among the curves. In Fig. 4a, the 

difference is less apparent, because the quality of the initial points is less varied and different scheduling schemes 

lead to similar results. The practical impact of this study is that as computing speeds improve, and denser grids 

become computationally affordable, proper prioritization will become even more important. 

5.2 Impact of Improved Estimation of Strength and Thickness 

The estimation of edge strength and vessel thickness can be improved by using a 2-D procedure. These 

estimates can be derived as byproducts of the seed point verification procedure (Stage 2) that filters out false 

initial points [1] using the correlation kernels, as described in Section 2 above. The 2-D edge strength Ds2ˆ  is 

simply the sum of the highest left and right correlation kernel responses. The 2-D estimate of vessel thickness, 

denoted Dt2̂ , is the distance between the two points that have the strongest 2-D kernel responses. The strength 

thickness product Dp2ˆ  is computed by multiplying Ds2ˆ  and Dt2̂ . 

Figs. 4c & 4d show the performance of scheduling based on Ds2ˆ , Dt2̂ , and Dp2ˆ . Notwithstanding the higher 

accuracy of 2-D estimation, there was no significant improvement over prioritization using 1-D quantities. This 

can be explained as follows. Whereas the prioritization of initial points by the above measures does lead to the 

tracing of more prominent vessels, it does not necessarily lead to prioritized tracing of the most important 

segments – ones that form the landmarks. We therefore conclude that the strategy of filtering all the initial points 

beforehand does not significantly improve the growth rate of the partial result quality. 
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5.3 Impact of Preempting Long Traces to Limit Computational Work 

From the similar quality growth curves resulting from the 4 prioritization schemes based on Dp1ˆ , Ds1ˆ , Dp2ˆ , 

and Ds2ˆ , we may conclude that the sub-linear behavior of these curves is about the best that one can achieve 

using any of the prioritization algorithms discussed above. To improve upon these strategies, we note that they 

consider the quality of the initial points, which is related to the quality of the landmarks, but do not consider the 

computation needed to detect the landmark. For instance, it is quite possible, indeed common, for the algorithm to 

get caught up in a long trace over a strong and thick vessel that yields very few intersections, as illustrated in Fig. 

2(a). To prevent such a situation, it makes sense to preempt the tracing. This is loosely analogous to preemptive 

scheduling of processes in operating systems [17,27], where preemption serves to improve the average response 

time, and limits the damaging effects of processes that are caught in infinite loops.  

The simplest preemptive scheme is to stop a tracing thread after a certain fixed number of steps, and 

returning the stopping point to the priority queue. The priority of the returned point is computed the same way as 

that for initial points. Figs. 5a & 5b show the impact of preempting traces after 40 steps. The number of steps was 

estimated empirically. Even for this simple-minded scheme, the Q vs. W curve is promising - rising above the best 

non-preemptive result (Fig. 4). 

Some modifications of the simple preemptive algorithm were also studied. As an example, we note that often 

the tracing passes through a branch point and continues (e.g., see Fig 2(a)). If during the tracing, such a case  

could be detected [1], the next tracing thread could be initiated from the strongest seed point near the location of 

detection, hoping that an immediate intersection will result. Although this strategy outperforms the simple-minded 

preemptive schedule, the improvement is modest. This is because our detection strategy for these cases is 

unsophisticated – based on comparing the edge response on the left and right boundaries of the vessel being 

traced, and declaring a detection when the ratio is large enough [1]. A false indication, or a poor choice of nearby 

seed point disrupts the order of prioritization without any payoff. If numerous such cases occur, this algorithm 

will be out-performed by a simple non-preemptive prioritization scheme. Unfortunately, the detection method has 

to be a simple scheme that does not add too much to the overall computational cost.  

In conclusion, preemptive algorithms are generally better than the non-preemptive ones, since they have the 

ability to end long and non-productive tracing threads.  

5.4 Heuristic Algorithm Based on Spatial Prioritization of Tracing 

A detailed step-by-step dissection of the optimal schedule for several images reveals that it primarily 

derives its high performance from advance knowledge of the spatial locations and quality values of the landmarks. 

It concentrates just-sufficient levels of tracing effort around the most promising landmarks. This observation 

suggests predicting landmark locations and qualities, and using these to schedule the tracing.  
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Landmark locations and qualities can be predicted from the initial processing (Stages 1 and 2). As noted 

earlier, a filtering procedure can be used to eliminate all seed points that do not correspond to a pair of nearly 

parallel edges, and as a byproduct, produce local orientation, strength, and width estimates (Fig. 6a). Shown in 

Figs 6b - 6g are cropped and enlarged views of selected boxes formed by the grid lines. In these images, the short 

lines crossing the grid lines mark the estimated orientations of the initial points. The black dots on these lines 

indicate the location of the initial points after the filtering. From these images, the presence/absence of landmarks 

inside the grid box, can be guessed even before tracing, by analyzing the distributions and orientations of the 

initial points around the grid box. For example, in Figs. 6b-6d, the orientations of the initial points clearly suggest 

the existence of at least one landmark inside the grid box. Conversely, in Figs. 6e & 6f, although there are initial 

points associated with that grid box, their parallel orientations suggest that there is probably no landmark in the 

grid box. However, not all grid boxes exhibit the simplicity of Figs. 6b-6f. For instance, the right side box in Fig. 

6g shows a more complex case. Although there is no landmark inside this box, a landmark is next to its left 

border. This suggests that one should not only consider the possibility of a landmark inside a box, but also its 

neighborhood. On the other hand, errors in seed point detection or filtering can produce misleading conclusions 

about grid boxes. 

A computationally simple yet effective measure is needed to capture these intuitions. Primarily, it must 

rate the likelihood of a landmark occurring inside a grid box, and estimate its quality. We choose a weighted 

angular diversity measure adapted from angular statistics, [28,4]. The angular variance of a set of unit vectors 

{ })()2()1( , Kuuu  is defined as )(

1
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of the resultant of the unit vectors is as large as possible K when all the vectors are aligned with each other, and 

the least possible 0 when they are pointing in opposite directions, canceling each other out. For the present work, 

a strength-weighted version of the angular variance is used, and is further weighted by the total number of 
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The angles must be doubled because the angular diversity between a pair of vectors is maximum when they differ 

by π /2, and minimum when they differ by π . In computing the above measure, an initial point is assigned to a 

grid box if it is located on or sufficiently close to any of the gridlines that form the grid box. Therefore, an initial 

point may belong to more than one grid box.  
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The grid boxes are prioritized by their values of )(GD . Boxes with more numerous and stronger initial 

points and with a higher angular diversity will have greater values of )(GD . To illustrate the effectiveness of this 

approach, the top 10% of the grid boxes in the priority queue for the image shown in Fig 6a are indicated with 

dots in the center. Note that most of these marked boxes have at least one landmark within or nearby.  

Within a grid box, the initial points are prioritized equally. The tracing is preempted after a number of steps 

that is proportional to the size of a grid box. Upon preemption, the stopping point is inserted back into the priority 

queue at the same level of priority as the grid box that the tracing was stopped in. An exception occurs when the 

tracing is preempted in a grid box whose priority is higher than the grid box from which the tracing was initiated. 

In this case, the tracing is continued until the next preemption. Therefore this is a preemptive scheduling 

algorithm with both spatial and edge strength based prioritization. We term this "spatial prioritization scheduling".  

Fig.7 shows the results of applying the above scheduling algorithm on 4 selected images. The curves in the 

top row represent cases when the scheduling algorithm was successful in approximating the optimal schedule.  

The lower row of Fig. 7 shows two less-successful cases. Although these results are still superior to random 

scheduling, they exhibit a characteristic “plateau”. These occur most often due to errors in the seed points. When 

many initial points are missed, or wrongly filtered, especially initial points on the strong vessels, the Q vs. W 

curve exhibits a sharp increase in the beginning, a plateau in the middle, and another sharp increase at the end. At 

the beginning, boxes with the most numerous and strongest initial points are processed, leading to the detection of 

numerous and strong landmarks, and a corresponding sharp increase in the quality of partial results. However, due 

to missing initial points, some of the boxes containing landmarks are assigned low priority. In quite a few cases, 

the missed initial points are located on strong vessels.  They are often missed due to imaging artifacts such as 

glare, and because they sometimes appear “hollow” [1], i.e., the central portion is lighter than the boundaries. In 

the late stages, an initial point for this vessel that belongs to another box with very low priority may finally trace 

to the landmark located in that patch and there will be a sharp increase at the end. 

The problem of a plateau in the growth function is addressed by dynamically updating the priorities of the 

grid boxes as the tracing progresses. Specifically, seed points that were missed during the grid search are detected 

whenever a trace crosses a grid line, and the priority queue is updated accordingly. The panels in the second row 

of Fig. 7 illustrate the visible improvement resulting from such dynamic updating. Illustrated in the panels of the 

bottom row are the two cases where the dynamic updating scheme results in improvements on the growth rate of 

the quality. In both cases, the missing or false filtering of an initial point greatly reduces the priority of the related 

grid box. Fortunately, a nearby grid box has a high priority and the trace initiated from that box crosses the grid 

line where the initial point was missed. Because of dynamic updating, the detection of this missing initial point 

would greatly increase the priority of the related grid boxes. Therefore, the landmark in this box will be obtained 

much earlier, resulting in an earlier increase of the quality measure. 
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The curve shown in Fig.8 is the average of a variety of cases representing varying degrees of success. 

Overall, this curve is much closer to the optimal curve and clearly outperforms all the others described above. 

Indeed, this is the only realizable algorithm (among those studied) that delivers a growth rate that is better than 

linear. Visual inspection of this algorithm's behavior (illustrated in Fig. 2b) indicates that it has the qualitative 

behavior of the optimal schedule - performing limited and localized tracing just around the most promising 

regions.  

Summary: Table 1 summarizes the relative performance of the scheduling strategies discussed above. It 

shows the quality of the partial result at the 33% effort level; i.e., W/Wtotal = 0.33. The most effective and 

systematic approach for the design of real-time vectorization algorithms was suggested by the spatial 

prioritization behavior of the optimal schedule. This algorithm produces a partial result whose quality is roughly 

400% better than that produced with purely random scheduling.  

6. Discussion and Conclusions 

This paper has described several methods for scheduling the computations needed to trace the vasculature in 

retinal images. This is needed for reliable real-time extraction of vascular landmarks as part of image-based 

spatial referencing techniques for laser retinal surgery. The optimal schedule is defined as the one maximizing the 

area under a normalized quality (Q) vs. computational cost (W) curve. 

An optimal scheduling algorithm is impossible to attain, and the optimal schedule is difficult to determine 

even after the traces and landmarks are known. A heuristic estimate of the optimal schedule was developed and 

used to guide the design of realizable scheduling algorithms. The most important idea in the design was the use of 

the initial grid analysis to predict locations of landmarks. Seed points near predicted locations received high 

priority for tracing. Dynamically recomputing priorities based on the tracing results, and preempting tracing also 

contributed to the final scheduling algorithm.  

The Q vs. W curve is somewhat analogous to the “correctness function” discussed within the real-time 

computation literature (see for example, the work of Lin et al., [11], who introduced the concept of “imprecise 

computations”). Starting from zero, the correctness function is formulated to grow monotonically with 

computation until it reaches unity. In this type of computation, it is of interest to maximize the growth in 

correctness to ensure that the best-possible partial result is available when the computational deadline occurs.  The 

present work appears to be the first to apply these ideas to real-time image analysis.  

Within the broader context of the intended application, much work remains. For the landmark tracing itself, 

as indicated by the difference between the approximately optimal schedule and our best algorithm, opportunities 

for future improvements exist. For example, the proposed methods can be applied more locally, or modified based 

on regions of surgical interest. The position of the aiming laser, often present in instruments, can serve as another 
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cue for prioritization. The grid computations may themselves be prioritized in a multi-resolution manner. For the 

present work, this was not pursued since this step takes little effort, so the potential payoff is modest. This could 

change if more sophisticated grid analysis algorithms are adopted. The measure used to prioritize the grid boxes 

could be improved using geometric models of vasculature [29], so that the prediction of locations of landmarks 

can be more accurate. The preemption can also be made more adaptive than the current simple strategy. On the 

other hand, more sophisticated strategies may not necessarily be better overall. For instance, as noted in Section 5, 

prioritizations based on the more accurate 2-D estimates of Dp1ˆ , Ds1ˆ , Dp2ˆ , and Ds2ˆ  do not significantly 

outperform the algorithms based on 1-D measures. Further research is needed to discover strategies that 

approximate the optimal schedule even better, once the overheads are accounted for. Most importantly, these 

ideas must be evaluated in terms of their effect on the ultimate goal of real-time spatial referencing. 
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ure 1: Illustrating the vectorization approach for tracing vasculature: (a) a sample red-free retinal 
iogram (1024×1024×8 bits); (b) initial sparse grid search for seed points; (c) illustrating the method for 
iving the seed points indicated in panel b; (d) illustrating the recursive tracing algorithm; (e) completed 
ing result, with the vascular landmarks (crossing and branch points) highlighted. 
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Figure 2: Illustrating the impact of scheduling on landmark detection performance for the same level 

of computational effort (W/Wtotal): (a) a partial result from tracing Fig. 1(a) using a poorly scheduled 
algorithm shows the work wasted on long and unproductive tracing; (b) a partial result from a better 
scheduled algorithm for the same computational work. The latter is much more productive, having 
prioritized its efforts in a manner that yields numerous prominent landmarks early; (c-f) Partial results for 
the two algorithms at 28% and 53% effort. 
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Figure 3: (a) Illustrating the approximate method for calculating the computational work for 

extracting landmarks X and Y for the purpose of estimating the optimal schedule. The work of tracing the 

segment connecting X and Y is attributed equally to X and Y. (b) Approximation of the optimal schedule 

for the image in Fig. 1, and the average approximation for a set of 84 images.  
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Figure 4: Q vs. W plots showing the results of scheduling based on prioritizing seed points using 1-D 

(upper row) and 2-D (lower row) estimates of Ds1ˆ , Dt1̂ , Dp1ˆ , Ds2ˆ , Dt2̂ , Dp2ˆ , at grid sizes of 25×25 
lines (left column), and 40×40 lines (right column), respectively. For the 1-D case, the quality growth 
curve is seen to be worst for reverse prioritization by Dp1ˆ , and best for prioritization based on Ds1ˆ  or 

Dp1ˆ . Random scheduling yields an intermediate level of performance. As expected, the denser grid 
search better reveals the differences between the prioritization schemes. The 2-D quality growth curve 
shows the same trends as the 1-D case.  
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Figure 5: Illustrating the impact of preempting the tracing after 40 steps, at grid sizes of 25×25 lines (a), and 
40×40 lines (b), respectively. The Q vs. W curve for the preemptive schedule outperforms the best of the non-
preemptive schemes (seed points prioritized based on Dp1ˆ ), reproduced here for comparison. 
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Figure 6: Illustrating the basis for spatial prioritization. (a) The small line segments crossing the gridlines 
indicate the filtered seed points from Fig.1b. Their orientations indicate the estimated local vascular 
orientations. Panels b-g highlight selected regions from Panel a. Boxes with the highest 10% of )(GD  values 
are shown marked with a dot in the middle. Panels (b-d) illustrate cases when the filtered initial points provide 
strong clues about the presence of landmarks within the grid box. Panels e & f illustrate cases when the initial 
points suggest the absence of landmarks. Panel g illustrates, a more complex case. Although there is no 
landmark inside this box, a landmark is right beside its left border. This example suggests that one should not 
only consider the possibility of a landmark inside a box, but also in the box's neighborhood. Notwithstanding 
such cases, this approach is very successful. 
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Figure 7: Examples of Q vs. W curves for selected images for spatial prioritization scheduling. The top 

row indicates successful cases with the curve approaching the optimal. The second row shows less successful 
cases, labeled “spatial prioritization schedule”. Some improvement was observed for such cases by 
dynamically updating the grid box priorities (curves labeled “spatial prioritization with updated priority”). 
The bottom row shows two boxes whose priority increased significantly due to dynamic updating. 
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 (b) 

Figure 8: Average Q vs. W plots showing the impact of preemption, spatial prioritization of seed 
points, and dynamic updating of priorities, ideas based on approximately mimicking the optimal schedule 
(labeled “spatial prioritization with updated priority”) at grid densities of 25 (panel a), and 40 (panel b), 
respectively. The combination of these approaches is seen to outperform all other schedules that were 
studied. The relative performance is quantified in Table 1. 
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Table 1: Summarizing the average quality of the partial result attained after 33% of the total 
computational work is expended. Note that the best case (preemptive spatial prioritization scheduling) has 
a quality value that is roughly 400% better compared to random scheduling. 

 

Scheduling Method 

 Q @ W = 33% 

(N=25) 

 Q @ W = 33% 

(N=40) 

1. Random prioritization 0.10 0.09 

2. Non-preemptive prioritization without seed point filtering   

• Reverse prioritization by p1D 0.13 0.08 

• Prioritization by t1D 0.13 0.13 

• Prioritization by s1D 0.16 0.17 

• Prioritization by p1D 0.17 0.16 

3. Non-preemptive Prioritization after filtering seed points   

• Reverse prioritization by p2D 0.13 0.08 

• Prioritization by t2D 0.15 0.15 

• Prioritization by s2D 0.16 0.15 

• Prioritization by p2D 0.17 0.20 

4. Preemptive Scheduling with:   

• Prioritization by p1D 0.24 0.24 

• Prioritization by p1D with branch detection 0.26 0.27 

• Spatial Prioritization Scheduling with dynamically

updated priority. 0.41 0.41 
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