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Abstract. This paper presents a disease-oriented evaluation of two re-
cent retinal image registration algorithms, one for aligning pairs of retinal
images and one for simultaneously aligning all images in a set. Medical
conditions studied include diabetic retinopathy, vein occlusion, and both
dry and wet age-related macular degeneration. The multi-image align-
ment worked virtually flawlessly, missing only 2 of 855 images. Pairwise
registration, the Dual-Bootstrap ICP algorithm, worked nearly as well,
successfully aligning 99.5% of the image pairs having a sufficient set of
common features and 78.5% overall. Images of retinas having an edema
and pairs of images taken before and after laser treatment proved the
most difficult to register.

1 Introduction

Images of the retina are used to diagnose and monitor the progress of a variety
of diseases, including such leading causes of blindness as diabetic retinopathy,
age-related macular degeneration, and glaucoma [7]. Registering images taken
weeks, months or years apart can be used to reveal changes in the retina at the
level of small regions and individual blood vessels. Multimodal registration can
reveal the relationship between events seen on the surface of the retina and the
blood flow shown in the angiography.

Many retinal image registration algorithms have been proposed in the liter-
ature [4, 5]. Recently, we have developed two extremely successful algorithms
which together simultaneously align all images in a set of two or more images
of the same retina [8, 3]. The goal of the current work, as the next step toward
wide-spread use, is a clinically-oriented validation of these algorithms. Clinicians
are interested in knowing an algorithm’s capabilities on a variety of diseases, on a
variety of stages of the diseases, and as a patient progresses through these stages.
We therefore selected a set of diseases to study, focusing on leading causes of
blindness for aged population. A set of patients was selected for each disease,
and retrospective images were collected for each patient across the progression
of the disease. These image sets form the basis for validating the performance of
our registration algorithm in a clinically-oriented framework.



2 Pairwise and Joint Registration

Registering a set of images is done in stages which we call “pairwise” and “joint”
registration. In pairwise registration, the new Dual-Bootstrap Iterative Closest
Point (DB-ICP) algorithm (Fig. 1) [8] is applied to each pair of images in the
set. For each successful registration, a set of matching constraints is produced.
Joint registration [3], applied to sets involving three or more images, takes these
constraints and produces a globally consistent set of transformations (Fig. 1(f)).
Only images that could not be matched to any other image in all attempts
at pairwise registration are left out. The quadratic transformation is a 2 × 6
parameter matrix Θ, which maps image location p = (x, y)T in image Ip to
location q = ΘX(p) in Iq, where X(p) = (1, x, y, x2, xy, y2). Both pairwise
and joint registration are feature-based techniques, using automatically detected
blood vessel centerlines and their branching and cross-over points [2, 9].

The core idea of DB-ICP is to grow an image-wide registration starting
from initial estimates that are only accurate in small, “bootstrap” image regions
(Fig. 1) (see [8] for details). Bootstrap regions are generated from hypothesized
landmark correspondences and their surrounding vasculature. Hypothesized cor-
respondences are generated by matching invariant signatures. Initial bootstrap
regions are grown into image-wide transformations by iterating a three-step pro-
cess:

Estimating the transformation: The transformation is estimated only in the
“bootstrap region” (shown as the white box in Fig. 1(c)-(e)), using a robust
form of ICP [1]. ICP matches are generated between the vessel centerline
points.

Region bootstrapping: Based on the uncertainty (covariance matrix) in the
transformation estimate, the bootstrap region is expanded. Stable, accurate
estimates cause rapid growth, while unstable, inaccurate estimates cause
slow growth.

Model bootstrapping: The similarity transformation model used in the initial
bootstrap region is automatically switched to a higher-order model (eventu-
ally the quadratic) as the bootstrap region grows to cover the entire image.

The process terminates with success if one of the initial bootstrap regions tested
can be expanded to a sufficiently-accurate, stable image-wide transformation.

The key idea of joint registration is that pairs of corresponding centerline
points (in the final bootstrap region) from image pairs aligned by DB-ICP be
mapped consistently when simultaneously transformed into any other image.
This produces constraints on the final transformation estimates that ensures
global consistency in all transformations, even image pairs that DB-ICP did not
register. See [3] for details.

3 Pairwise Acceptance Criteria

The accuracy of the pairwise registration between two images is defined by the
alignment of the vessel centerlines, termed the centerline error measure (CEM).
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Fig. 1. Retinal image registration results on images of a patient with branch vein
occlusion. Images in (a) and (b) were taken 3.5 years apart. Panel (b) is overlaid with
the automatically extracted vessel centerlines and landmarks (branch and cross-over
points). Panel (c) shows an initial alignment of the two images based on small regions
(“bootstrap regions” — the white rectangle) surrounding a landmark correspondence.
Extracted blood vessel centerline points from the two different images are shown in
black and in white. Panels (d) and (e) show intermediate and final alignment results of
Dual-Bootstrap ICP. Panel (f) shows the joint registration of all the images that taken
at the same time as (a).



Fig. 2. Examples of image pairs to demonstrate the weighted error measure. The left
shows registration of two Diabetic Retinopathy images taken 8 years apart, sharing 30%
common traces. σm is 4.2 pixels and σw is 1.15 pixels. The right shows the alignment
of two images of wet AMD, with σw = 3.12 pixels. This result is in the “grey area” of
accuracy, which should be manually validated.

In [4], CEM is defined as the median of the alignment errors of the final trace
point matches, and an empirical evaluation on images of healthy retinas produced
a threshold of 1.5 pixels. Unfortunately, on images of diseased eyes, the median
is not robust enough and the 1.5 pixel threshold does not accommodate changes
caused by disease progression. We rectify the first problem here by proposing a
weighted CEM. We address the second with an empirical study in Section 4.

Let {ri} be the set of alignment errors on final match set {(pi,qi)}. Each
ri is defined as a point-to-line distance between the transformed pi and the
linear approximation of the centerline at qi. We assign a weight, wi, to each
match using the product of a robust registration error distance weight (from
the Beaton-Tukey biweight function [6]) and a feature similarity weight. The
new weighted CEM for error set {ri} is σw =

(∑
i wiri

)
/
(∑

i wi
)
. We denote

the old median CEM as σm. Figure 2(a) clearly shows the superiority of σw.
Numerically, we have found overall performance much better using σw, and it is
used throughout our experiments.

4 Validation

The test dataset was formed from retrospective images of patients with four
common diseases: Diabetic Retinopathy (DR), Vein Occlusion (VO), dry AMD
and wet AMD. Ten representative retinas were chosen for each disease and six
healthy retinas were added, giving a total of 46 retinas. Each retina (patient) had
at least 3 visits over a time period as long as 5 years. Pathologies appearing in the
diseased retinas include flame-shaped hemorrhage for VO, fibrosis for wet AMD,
neovascularization for DR, and RPE detachment for dry AMD. Color slides were



pulled from the records at the Albany Center for Sight, scanned, and resized to
1024 × 1024 pixels. 855 images (producing 14,924 image pairs) were acquired.
An additional 61 digital fluorescein angiogram sequences (Topcon IMAGENET)
were obtained of different eyes, each with two digital red-free images.

Results on Joint Registration We present results on joint registration first,
even though it depends on the results of pairwise registration. The reason is
that we use joint registration to validate pairwise — joint registration can recover
from failures in pairwise. We need to know the performance of pairwise and joint
separately because datasets can often involve a small number of images, perhaps
just two. Also, when we say joint registration here, we mean joint registration
of the entire image set for each eye, even images separated in time by five years.

Taking σw = 1.5 pixels for pairwise registration and then applying joint reg-
istration based on the resulting aligned image pairs, all images matched to some
other image were aligned accurately by joint registration. The only errors were
images completely unmatched by pairwise registration. These images all show
small, but significant (for registration) changes in the position of the vasculature
over time. Relaxing the accuracy to 3 pixels allowed all but two images to be
jointly registered for the entire data set. (The missing two were of a single pa-
tient who had developed a fibrosis that obscured the entire retina.) We manually
validated the resulting transformations.

The virtually flawless results of joint registration allow us to develop ap-
proximate upper bounds on the performance of pairwise registration. For any
retinal image pair we can start from the “correct” transformation from the joint
registration, and find an approximation to the correct set of correspondences
(again, with the feature sets fixed). From there we can determine the covariance
of the transformation estimate. If the condition number of this matrix indicates
that the transformation is sufficiently stable and σw is less than 1.5, we say that
an accurate feature-based pairwise registration possible. We term such a trans-
formation “stable”. As a result for each evaluation below we give two success
rates. We use the notation Sa(Ss), where Sa is the absolute success rate by con-
sidering all pairs, and Ss is the stable success rate considering only pairs with
stable transformations. Note that at this point we do not consider increasing the
threshold on CEM beyond 1.5.

Pairwise — Overall Results The overall success rate of DB-ICP pairwise
registration is 78.5%(98.5%). If we only consider pairs that have at least one
common detected landmark (and therefore one possible starting point for DB-
ICP), the result is 99.5%. There are two reasons for the difference between
the absolute and “stable” success rates. The first is a lack of common features
between image pairs. There is little that can be done in the DB-ICP algorithm
about this (though perhaps something can be done in feature extraction). The
second is the effect of shifts in position of the vasculature over time. We return to
this later. The overall conclusion is that the DB-ICP algorithm itself is virtually
flawless in finding a correct registration from the feature-sets if one is possible
to find.



Fig. 3. Validation results by medical conditions. The plot shows the results of regis-
tering image pairs taken from the same visit and pairs from different visits, separately.
Each bar shows the percentage succeeded pairwise, with the success rate for stable
transformations added to the top.

Results by Medical Condition Focus on individual medical conditions, the
highest success rate is in dry AMD — 97.93%(100%) — which is expected since
dry AMD does not have pathologies that affect the position and appearance
of the vasculature. The success rates for healthy, DR, wet AMD and VO are
83.8%(95.1%), 65.5%(96.7%), 77.5%(99.1%), and 65.9%(99.7%), respectively.
The lower Ss’s for healthy retinas and DR result are an artifact of the image
acquisition process: wider coverage of the retina is required for evaluation and
therefore there is lower overlap between images.

Same Visit / Different Visit We can further break down the results into
“same visit” and “different visit” to analyze the effect of longitudinal changes
on the algorithm (see plot 3(b)). The overall success rates are 96.4%(98.3%) and
75.3%(98.5%), respectively. The difference in Sa is mainly due to longitudinal
changes. As the medical condition progresses, the retinal surface and vasculature
tend to undergo changes as a result of edema, fibrosis, appearance/disappearance
of pathologies, etc. The exception to this is the low Ss for the healthy set —
surprisingly these images were generally of much poorer quality (and there are
fewer of them in the clinical records!).

Results by Medical Events Analyzing results by medical conditions is im-
portant but relatively difficult in a retrospective study of the current size. We
examine the results in two ways. First, we partition the diseases into those that
can cause an edema — as swelling of the retina surface due to build up of fluid
— and those that can not. (Note that we don’t have records of whether or
not an edema was present.) The significance of this is that an edema causes a



all w/ edema w/o edema same visit different visit

σw < 1.5 78.5 70.5 93.5 96.4 75.3

σw < 4 92.2 89.3 97.6 97.2 91.3

Table 1. Absolute success rates (Sa) using CEM thresholds of 1.5 and 4 pixels. As
expected, the biggest differences are for image pairs of diseases that cause edema and
for image pairs taken at different visits.

misalignment due to inconsistencies with the quadratic surface model underly-
ing the transformation. Our results show that the edema causing diseases — wet
AMD, VO and DR have lower success rates — 70.5%(98.4%) — than non-edema
causing conditions 93.5%(98.5%).

The second analysis based on medical condition is more precise — effect
of laser surgery. We compare two sets of image pairs: the first contains pairs
having one image before and one after surgery, and the second contains pairs
before or without surgery. The success rates are 63.1% (98.1%) and 91%(99%)
respectively. The difference is that laser treatment causes swelling and scarring,
which shifts the position of the vasculature, thereby causing misregistration.

Results on Fluorescein Angiograms The circulation of fluorescein defines
five successive stages of the FA image sequence: arterial, arteriovenous, venous,
late venous and recirculation. We define the success rate for a specific phase as a
fraction of sequences for which joint registration successfully aligned all images
in the sequence up to and including the phase. 100% success rate was achieved
up to venous phase, 92% for late venous and 75% for recirculation. Failures are
caused by obscuring of the vasculature due to leakage in vessels and a resulting
pooling of the fluorescein dye.

Upper Bound on CEM for Pathological Data A CEM of 1.5 pixels causes
some correct registrations to be labeled as incorrect. Diseased eyes where an
edema is present cause slight misregistration because the quadratic surface model
becomes a less accurate representation. The scarring following laser treatment
causes tractional movement of blood vessels. Algorithmically, the misregistra-
tions appear as mis-alignment of the traces in small image regions (see Fig-
ure 2(b)) — “regional mis-alignment”. Raising the CEM threshold allows these
registration to be classified as correct, but the danger is that some true misalign-
ments would then be called correct as well. Therefore, we’d like to determine a
second, “gray area” threshold. Calling this threshold C2 and calling the original
threshold C1, we develop a three-part classification to registration results: when
σw ≤ C1 the registration is accepted as correct; when C1 < σw ≤ C2, the reg-
istration is provisionally accepted and presented to the clinician for verification;
when C2 < σw the registration is rejected. We empirically determine this thresh-
old as C2 = 4.0 by comparing the pairwise and joint transformations. Table 1
shows the fraction of image pairs (all pairs) below C1 and below C2.

Using the new threshold, the improvement on Sa is shown in Table 1. The
results fit our intuition, since most mis-alignments are from surface deformation.



5 Discussion and Conclusion

This disease-oriented evaluation has demonstrated the capabilities of our two-
part registration technique — the Dual-Bootstrap ICP pairwise algorithm and
the multi-image joint registration algorithm that builds on DB-ICP results —
in aligning retinal images in a clinical framework. The multi-image algorithm
aligned all but 2 out of 855 images. DB-ICP pairwise registration aligned 78.5%
of all pairs, 98.5% of the pairs for which a stable transformation exists (based
on the exisiting set of features), and 99.5% of the stable pairs having at least
one landmark in common. No incorrect registrations were accepted. Raising the
acceptable threshold to 4.0 allowed image pairs to be considered in a grey zone
that clinicians should check for accuracy. 92.2% of all pairs had a registration
error of at most 4.0. Edema and the longitudinal effects of laser treatment caused
the significant misalignments, and fibrosis completely obscured the vasculature
in the two images that failed completely. Our overall conclusion is that the Dual-
Bootstrap ICP pairwise and multi-image joint registration algorithms are robust
and reliable enough for a variety of clinical uses.
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