282 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 2, FEBRUARY 2005

Improving Performance of Distribution
Tracking through Background Mismatch

Tao Zhang, Student Member, IEEE, and
Daniel Freedman, Member, IEEE

Abstract—This paper proposes a new density matching method based on
background mismatching for tracking of nonrigid moving objects. The new tracking
method extends the idea behind the original density-matching tracker [7], which
tracks an object by finding a contour in which the photometric density sampled from
the enclosed region most closely matches a model density. This method can be
quite sensitive to the initial curve placements and model density. The new method
eliminates these sensitivities by adding a second term to the optimization: The
mismatch between the model density and the density sampled from the
background. By maximizing this term, the tracking algorithm becomes significantly
more robust in practice. Furthermore, we show the enhanced ability of the algorithm
to deal with target objects which possess smooth or diffuse boundaries. The tracker
is in the form of a partial differential equation, and is implemented using the level-set
framework. Experiments on synthesized images and real video sequences show
our proposed methods are effective and robust; the results are compared with
several existing methods.

Index Terms—Active contours, density matching, level set method, tracking,
PDEs.
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1 INTRODUCTION

THIS paper deals with the problem of tracking a nonrigid object
moving through a cluttered background using photometric
features such as intensity, color, or texture. In the original density
matching method [7], we assume that the class of objects to be
tracked is characterized by a probability distribution over some
photometric variable. The tracking task in each frame of the video
sequence is to find a region of the image whose sample distribution
over the photometric variable most closely matches the model
distribution. This method may be labeled foreground matching, as
the region used for sampling the distribution is the interior of the
object of interest (or an estimate of this object).

The algorithm based on foreground matching can be represented
in the framework of active contours. A curve evolves via a partial
differential equation to the boundary where the matching between
the density sampled from the curve-enclosed region and the model
density is optimized. Unfortunately, foreground matching can be
quite sensitive to both initial curve positions and model densities.
Curves evolving under this method often converge to positions
corresponding to incorrect local optima. An example of this type of
problem is shown in Fig. 1. To attack these sensitivities to
initialization and model density, we propose a new algorithm
which incorporates background mismatching. The idea is simple:
Whereas foreground matching attempts to match the region
representing the object of interest (i.e., the foreground) to a model,
background mismatching seeks to mismatch the complement of the
region (i.e., the background) to the model. The new methods that
result are robust to initial curve positions and density distributions.

The remainder of the paper is organized as follows: Section 2
reviews related literature on tracking. Section 3 introduces the
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theory of density matching flows and derives the background-
mismatching flow. Section 4 analyzes the behavior of different
flows in a variety of contexts, and demonstrates the robustness of
the new flows to initial curve position. Section 5 discusses the level
set method-based algorithm and implementation details. Section 6
shows experimental tracking results on synthesized images and
real video sequences and compares our method with existing
methods. Section 7 concludes the paper.

2 RELATED WORK

Due to wide-ranging applications from video surveillance to
medical imaging, there has been substantial research in the area of
visual tracking. The seminal work on snakes [9] led researchers into
the field of active contours. Many variations and extensions of the
original snake method have been proposed, for example [17], [20].

Many tracking methods use edges extensively [8], [18]. These
trackers employ a variety of techniques, including Kalman filtering
[15] which assumes a linear Gaussian state space model, con-
densation [1] which uses particle filtering to accommodate a
nonlinear non-Gaussian state space model, and deformable
templates [23]. Many methods incorporate shape [1] or multiple
cues [4] to make the tracking robust. However, when dealing with
tracking in clutter, edges alone are often not reliable features due to
the presence of spurious edges and noise. Edge-based methods
generally require the initial estimate to be very close to the real
boundary; if this is not the case, these methods fail simply because
they cannot sample from the real boundary.

Currently, there is substantial research on geometric curve
evolution. Caselles has proposed the geodesic active contour
model [2] to solve image segmentation problems. Paragios and
Deriche [14] have extended this idea to motion estimation and
proposed the geodesic active region method [13] for tracking by
using both boundary and region information. Chan and Vese [3]
have developed a curve evolution equation which can achieve
good segmentation even when there is no sharp object boundary
by solving a simplified form of the Mumford-Shah problem [11].
Yezzi et al. [22], [21] and Tsai et al. [19] have some similar work on
segmentation problems. Mansouri has developed a region tracking
method [10]. Most of these papers use level-set methods [12] to
implement geometric curve flows.

Comaniciu et al. [5], [6] proposes a method based on mean shift
analysis to track a distribution by maximizing the Bhattacharyya
measure between a model distribution and an empirical distribu-
tion. The technique of background weighted histograms [6] has
some relation to the idea of background-mismatching. However, the
mean shift approach assumes the shape of the object is an ellipse
and, therefore, has limited applicability when dealing with
deformable objects.

3 THEORY

This section establishes the theory behind the new density-matching
flows. The reader is sometimes referred to the original density
matching paper by the authors [7]. Let 2 C R? be a bounded region,
corresponding to the domain of the image, and let w C Q be the
estimated region in which the object of interest resides. Let z € IR"
be the feature variable; z can be a gray-scale intensity (n = 1), color
vector (n = 3), texture vector (n is the size of the filter-bank), or any
other feature which can distinguish the object of interest from the
background. Let Z : IR* — IR" be the image.

The model density is given by ¢(z) and is assumed to be learned
prior to running the algorithm. One simple method for learning this
density is to identify the object of interest within one or more
training images, and to compute the histogram of pixels inside this
object. Unlike the model density, the sample density (sometimes
called the empirical density) must be computed for a given image Z
and estimated region w C Q; this is achieved by the formula
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Fig. 1. Two cases where original density matching methods fail. Shaded regions
are the target region, dashed curves are initial curves. (a) The target has one
color. The curve ends up inside the target region. (b) The target consists of two
uniform regions. The curve will shrink and ultimately disappear.

p(zw) = [ 6(z— Z(x))dz/ [ dx, where §(z) is the n-dimensional
delta function.

The density matching criteria used in this paper are the Kullback-
Leibler distance and the Bhattacharyya measure. The Kullback-
Leibler distance is givenby K (w) = [ ¢(2)log(q(z)/p(z; w))dz. K (w) is
anonnegative value measuring the distance or dissimiliarity between
two probability measures. Smaller K(w) values mean smaller
distances. (Technically, K is not a true distance/metric.) The
Bhattacharyya measure is given by B(w) = [ v/a@p(zw)dz. B(w) takes
on values in [0,1], and measures the similarity between densities.
Larger B(w) values mean smaller distances. Note that B may be
easily converted into a metric [6].

The background-mismatching flow is based on the following
observation: in most cases, when the estimated region w matches the
target region, the density mismatching between the target region and
the background Q\w is maximum. Thus, a curve evolving in the
direction which maximizes the mismatch of densities will hopefully
match the target. We will therefore try to minimize either —K (Q\w)
or B(2\w). Such a flow may potentially be even more effective if we
combine it with a foreground-matching flow of the type introduced
in [7]. These flows try to match the sample density of the estimated
region w to the model density, i.e., to maximize either — K (w) or B(w).
A flow which is based on both background-mismatching and
foreground-matching is referred to as a combination flow.

The combination flows may be derived by finding the
variational derivatives of K(Q\w) and K(w) (or B(Q\w) and
B(w)) with respect to ¢ = dw, and then using gradient descent.
Using the methods of [7], the Kullback-Leibler combination flow
may be shown to be
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while the Bhattacharyya combination flow is given by
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where n is the outward-pointing unit normal. In both cases, the
first term is the foreground-matching term, and the second term
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corresponds to background mismatch; the coefficients Aj, Ay > 0
give the relative strength of these terms. There are a variety of
possibilities for setting these coefficients. For example, pure
background-mismatching is given by A; = 0. Another possibility
is Ay = B(w) and Ay =1 — B(w), where B(w) is the Bhattacharyya
measure. This choice is discussed at greater length in Section 4.

4 DiscussiON OF FLow EFFECTIVENESS

In this section, we discuss the performance of the background-
mismatching flow and foreground-matching flow in four ideal
situations, illustrated in Fig. 2. In all cases, we assume that 1) the
model density is exactly equal to the sample density of the true
object (i.e., the model is perfectly accurate); and 2) the model
density and the sample density for the region of the initial estimate
have nonoverlapping support. These assumptions are clearly ideal
assumptions, but they allow us to make some statements about the
efficacy of the flows.

In Fig. 2a, there is no intersection between the initial region and
the true object. In this case, curves evolving under both foreground-
matching and background-mismatching flows shrink and ulti-
mately disappear. This conclusion is based on the fact that the model
density values at each point on the curve are zero, while the sample
density values are positive; as a result, according to (1) and (2), the
curve may only evolve in the direction of the inward normal at each
point. Thus, without modification both the background-mismatch-
ing flow and the foreground-matching flow will fail in this situation.
In general, however, this situation is unlikely to arise. Since we are in
the tracking setting, we expect the initial estimate to overlap at least
a small amount with the true object; this expectation is one of the
factors that usually distinguishes tracking from segmentation. In the
case where this situation does arise, due to a sudden quick
movement of the object, the background-mismatching flow may
still be successful with some extra implementation details. These are
discussed in Section 5.

In Fig. 2b, the initial estimate is contained entirely within the
true object. Suppose that the true object is not uniform, but instead
consists of the ringed structure shown in Fig. 1b. If the initial
estimate is within the inner ring (as in Fig. 1b), then the sample
density at each point on the curve will exceed the model density.
As a result, under the foreground-matching flow, the curve will
shrink inward and ultimately disappear. By contrast, under the
background-mismatching flow the curve will expand outward to
expel the “foreground material” and will continue doing so until
the estimated region coincides with the true object.

In Fig. 2¢, the initial estimate and true object overlap with one
another, but neither is a subset of the other. Suppose that the true
object is homogeneous, in that it contains a single grayscale intensity
(color, texture, etc.). In this case, the sample density exceeds the
model density at all points on the curve outside of the true object,
while the reverse is true for all points within the true object. Thus,
under the foreground-matching flow, the curve will do two things: It
will contract away from the exterior of the true object, until it is
entirely contained within the true object; simultaneously, it will
grow within the true object. While both of these motions are correct,
the problem occurs when the curve has finished contracting away
from the exterior. In this case, the curve will be contained
somewhere within the interior of the object, and at each point on

Fig. 2. Relative positions of the true object (shaded region) and the initial position (dotted line).
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Fig. 3. The curve is initialized as uniformly distributed rectangles around the previous frame’s estimate, and the ones with largest Bhattacharyya values are selected as
new initial curves (a) frame 305, (b) searching positions, (c) the new initial curve (the rectangle), and (d) tracking result for frame 306.
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Fig. 4. Tracking in synthesized images. The leftmost three images use background-mismatching; the rightmost three images use foreground-matching. Both flows are

based on the KL distance.

y 9 @

9 © @

Fig. 5. Tracking in synthesized images. The leftmost three images use background-mismatching; the rightmost three images use foreground-matching. Both flows are

based on the KL distance.

Fig. 6. Tracking in synthesized images. The leftmost three images use background-mismatching; the rightmost three images use foreground-matching. Both flows are

based on the Bhattacharyya measure.

the curve, the sample and model densities will exactly match. As a
result, the curve will not move, and this is the final position. In fact,
there is very little we can say about where, within the true object, the
curve will end up. Once again, background-mismatching cures the
problem. The curve cannot end up inside the true object, as the
mismatch between the model density and background sample
density could always be improved by growing the curve until it
reaches the boundaries of the true object. Real examples of Figs. 1b
and 1c are illustrated in Figs. 4, 5, and 6.

In Fig. 2d, the initial estimate contains the true object. For both
foreground-matching or background-mismatching flows, it is
obvious that the speeds of all points on the initial curve are in the
inward normal direction. As a result, both flows converge to the true
object.

Note that both foreground-matching flows and background-
mismatching flows are special cases of the combination flow.
Given properly selected A, and ), the combination flow works
well in each of the cases discussed. Generally, a good heuristic for
selecting A; and )\, is the following: maintain A, > A; initially to
ensure convergence, and let A, < A\; when the curve is approaching
the target to ensure a good approximation to the true object.

5 IMPLEMENTATION

The level set method [16] is used to implement the curve flows,
whether they be background-mismatching or combination flows.
The level-set version of (1) is

9% _ |, «(Z(x)) — p(Z(x);w)
ot N(Z(x)w)
o 9(Z(z)) — p(Z(z); N\w) V41,

N(Z(z); N\w)

A similar expression can be derived for (2). Densities are
approximated by histograms; the computation of the sample
density p is made easier by the use of level-sets, as the region w is
easily computed as {x : ¢(z) < 0}. We chose to use a color as the
photometric variable; this choice is also made by Comaniciu et al.
[6]. Prior to running, the model histogram is found by hand-labeling
the true object in a training image, and computing the histogram
within this hand-labeled region. In practice, it is somewhat difficult
to compute an accurate model density, especially for highly
deformable objects moving in a cluttered environment. Thus, the
model histogram may be improved by taking several hand-labeled
training images, and averaging their histograms.

In general, the final curve estimate for the previous frame is used
as the initial estimate within the current frame. However, as has
been discussed in Section 4, problems can arise when the true object
and the initial estimate do not intersect. In this case, intersection-
checking may be employed; see Fig. 3. In intersection-checking, the
Bhattacharyya measure Bbetween the initial sample density and the
model density is used as a measure of intersection. If B is below a
threshold, then it is assumed that there is no intersection; instead of
using the previous frame’s estimate as the initial estimate, the
method places m x n uniformly distributed rectangles centered at
the previous frame’s estimate and then chooses the k rectangles with
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Fig. 7. Lip tracking. The leftmost three images use background-mismatching; the rightmost three images use foreground-matching. Both flows are based on

the KL distance.

the highest Bhattacharyya measures. These k rectangles are then
used as the initial curve. Example values of some of these
parameters are: Bhattacharyya threshold = 0.001, m =n = 2, and
k=1

One has to be a little bit careful with intersection-checking.
Problems can arise if objects with similar appearance are scattered
around the target. In this case, the method might include regions
which are not part of the true object.

6 EXPERIMENTAL RESULTS

To test the algorithm, we apply the background-mismatching flow
to both synthesized images and real video sequences and compare
the results with the following existing trackers.

e  Foreground-matching flows [7]. The entire motivation
of this paper is to correct the problems associated with
the original density-matching flows which did not
include background mismatch. It is important to verify
that the improvements promised in Section 4 do
indeed occur in practice.

e Geodesic active contours [2]. This method, which is
essentially a mathematically rigorous version of the elastic
snakes [9], is a traditional and often very successful method
of tracking. It is therefore a natural source if comparison.

e  Geodesic active regions [13]. This method is more sophis-
ticated than geodesic active contours, in that it uses
information about both the boundary and the interior of a
region. The use of interior information is analogous to that
of the density-matching trackers (although the way in which
in the information is used is quite different); thus, the
comparison is sensible.

Our final comparison shows that the combination flow can
outperform the background-mismatching flow in the case when
the object boundary is not sharp.

All algorithms have been implemented in Matlab without
optimizations under Windows 2000 platform on a Pentium III
450 MHz machine with 192 MB of RAM. The initialization in the
first frame of each sequence is done manually. In all cases, the
model density has been computed from a single training image.
The photometric feature used is color. Trackers based on both the
Bhattacharyya measure and Kullback-Leibler distance based have
been tested; the results of a single flow are shown unless the
results differ.

6.1 Comparison with Foreground-Matching Flow

The advantage of background-mismatching over foreground-
matching is illustrated in Figs. 4, 5, 6, and 7. In the first experiment,
the object of interest is composed of two uniform regions; we run
both background-mismatching and foreground-matching flows for
two separate initial estimates, see Figs. 4 and 5. Curves evolving
under the background-mismatching flow converge nicely to the
true boundary as long as the initial contours intersect the object. By
contrast, under the foreground-matching flows curves shrink to
disappear when the initial contour is inside the object and are
trapped in an incorrect local optimum when the initial contour
intersects the object.

In the second experiment, shown in Fig. 6 the object of interest
consists of a single uniform region. Curves evolving under the
foreground-matching flow stop when the curve is entirely

contained within the object, leading to a terrible estimate. Despite
the complex shape of the object of interest, the background-
mismatching flow performs well.

In the third experiment, we show the efficacy of the back-
ground-mismatching flow the in context of lip-tracking; see Fig. 7.
The background-mismatching flow tracks the lip with high
accuracy, while foreground-matching flow yields results with
large errors in most frames, and loses lock at frame 120.

6.2 Comparison with Geodesic Active Contours and
Geodesic Active Regions

We now compare the new method with two traditional flow-based
trackers. The method of geodesic active contours [2] is very well
known, and simple to implement. The more advanced technique of
geodesic active regions is presented in a paper by Paragios and
Deriche [13]. Like geodesic active contours, this technique uses
information about the boundary of the object; unlike the simpler
method, it also uses information about the interior. To test its
abilities versus those of background-mismatching, we use a
cluttered sequence, the “ball” sequence used is shown in Fig. 8.
(Note: to implement the geodesic active region method, we select
the model parameters (a, 3,7, ) as specified in that paper.)

In Fig. 8, the background-mismatching flow (top row) is
compared with both geodesic active contours (middle row) and
geodesic active regions (bottom row). Background-mismatching
maintains lock for the length of the entire sequence; for nearly all
frames, it yields very good results. In a small number of cases, such
as that shown in Fig. 8b, the exact boundary of the ball is not
detected; this results from the ball and the nearby background
having matching color profiles. As a result, color is not a
sophisticated enough feature to distinguish the background from
the object. When the ball leaves such an area, the tracker recovers the
exact position of the ball. Geodesic active contours rely entirely on
measurements of intensity contrast; they fail, predictably, due to the
high degree of clutter in this scene. More interesting is the failure of
the geodesic active regions method; this can be explained as follows.
In this method, the initial tracking result is very important in
defining a visually consistent model. When the background is
cluttered, the initial estimation is not accurate (see Fig. 8i). As a
result, the object can not be tracked accurately in this sequence; the
size of the error varies with the change in background.

6.3 Background-Mismatching Flow versus
Combination Flow

The combination flow achieves the same performance as the
background-mismatching flow in the above situations. However,
there is one important scenario in which a combination flow is
superior to a background-mismatching flow: the situation in which
the object has a very smooth boundary. As shown in Fig. 9, even if
the initial contour is placed very close to the real boundary, under
background-mismatching flows the tracking error is large; while
under combination flows, the tracking result is satisfactory. The
combination flow works better because the foreground-matching
term counteracts the background-mismatching term when the
estimated curve approaches the boundary of the true object.
However, this increased accuracy comes at some cost, as the
combination flow is more computationally intensive.
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Fig. 8. Tracking a ball. The top row is background-mismatching, based on the Bhattacharyya measure: (a) frame 1, (b) frame 39, (c) frame 305, and (d) frame 509. The
middle row is geodesic active contours: (e) frame 28, (f) frame 29, (g) frame 30, and (h) frame 31. The bottom row is geodesic active regions: (i) frame 28, (j) frame 29,

(k) frame 30, and () frame 31.

()

(b)

()

Fig. 9. Tracking an object with smooth boundary, the dashed lines are the real boundaries. (a) The initial curve position, (b) result of the background-mismatching flow,
and (c) result of the combination flow. Both flows are based on the Kullback-Leibler distance; the combination flow uses A\; = B(w), A» =1 — B(w).
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Fig. 10. Woman walking with baby. Frames 1, 80, 226, 329, 421, and 616.

Fig. 11. Swimming fish. Frames 1, 81, 170, 198, 202, and 213.

6.4 More Experiments and Failure of the Proposed
Method

In this section, we show the results of two more challenging
experiments, as well as some cases which the new method fails. In
Fig. 10, we show six frames from a 641 frame surveillance-style
sequence (captured at 30 Hz), in which a woman carrying a baby
walks through the woods. As can be seen in frame 80, the tracker is
occasionally imprecise in capturing the boundaries of the woman

(here it is missing the head); however, it always recovers within
1-2 frames. Note also that the tracker is quite good at dealing with
changes in scale. In Fig. 11, we show six frames from a 223 frame
sequence (captured at 15 Hz) in which a swimming fish is tracked.
This sequence is challenging due to the poor contrast between the
fish and the background, as well as the clutter (other fish, coral)
and the dynamic background. The tracker is successful for the first
197 frames. However, it begins to encounter difficulties in
frame 198, as it passes a small object which has a similar intensity
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profile. This object, not surprisingly, is incorporated into the
estimate of the fish’s current location. Problems arise when the
object moves further away from the fish, see frames 202 and 213;
ultimately, the estimate of the fish’s location is quite bad. This sort
of failure is quite natural and should be expected, given the
framework of density-matching on which the algorithm is based.

7 CONCLUSIONS

This paper extends the idea of tracking based on distribution
matching by deriving a new flow based on background-mismatch-
ing. The new flow is far more robust to initial curve positions as
well as variations in the model distribution. In fact, the method
does not require the initial curve to be very close to the true object
boundary; the contour will converge as long as the initial curve
intersects the true object. Experiments show the new method is
effective in tracking nonrigid objects in cluttered environments.
Furthermore, the flow obtained by combining the background-
mismatching flow and the foreground-matching flow improves
performance when the object boundary is smooth.

There are two natural directions for future research. The first
relates to the choice of the photometric feature. In this paper, we
have consistently used color as this feature. However, the
photometric variable can be anything which distinguishes the true
object from its background. The choice of this feature can be critical
to some tracking problems; thus, a more discriminating variable,
such as texture, may be appropriate. With high-dimensional
variables, it also is important to find reasonable ways of modeling
their densities (a histogram is no longer effective). A second
direction for research involves incorporating learned shape
information into the flows, to make them more robust.
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