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Abstract

A new tracker is presented. Two sets are identified: one
which contains all possible curves as found in the image,
and a second which contains all curves which character-
ize the object of interest. The former is constructed out of
edge-points in the image, while the latter is learned prior to
running. The tracked curve is taken to be the element of the
first set which is nearest the second set. The formalism for
the learned set of curves allows for mathematically well un-
derstood groups of transformations (e.g. affine, projective)
to be treated on the same footing as less well understood
deformations, which may be learned from training curves.
An algorithm is proposed to solve the tracking problem, and
its properties are theoretically demonstrated: it solves the
global optimization problem, and does so with certain com-
plexity bounds. Experimental results applying the proposed
algorithm to the tracking of a moving finger are presented,
and compared with the results of a condensation approach.

1 Introduction

This work addresses the tracking of moving contours in
a video-stream. Specifically, given a sequence of images in
which a known object of interest is in motion, the goal is
to track the object’s silhouette across time-varying images.
Applications abound in medicine, surveillance, and audio-
visual speech recognition for noisy environments.

A standard approach to tracking is embodied in the con-
densation tracker [5, 1], which relies heavily on an a pri-
ori knowledge of the dynamics of the tracked object. In
this paper, a more realistic assumption is made: a priori
knowledge of the space in which the tracked object lives is
assumed, but not the dynamics within that space. Section
1 outlines the general approach to the problem of track-
ing with only knowledge of the space in which the object
lives: tracking is posed a mixed continuous-combinatorial
optimization problem. Section 2 states two theorems which
allow this optimization problem to be attacked. The first
theorem shows that it is possible to almost reach the global
minimum, while the second theorem shows that it can be
done efficiently. Section 3 presents proofs of these theo-
rems. Section 4 presents complexity bounds on the speed

of the algorithm. Section 5 shows results: the advantage of
the proposed approach over one based on dynamics is seen
in experiments.

1.1 The Problem

In tracking an object through a video-stream, the ap-
proach taken will be to focus entirely on the object’s con-
tour, or outline. Thus, the problem of tracking reduces to
one of finding the “correct” curve in the image, i.e. the
curve which corresponds to the object of interest. Suppose
it is possible to generate two sets of curves. One set, ~E, rep-
resents all of the curves that can be generated from the con-
nection of edge-points in the image; a description of how to
produce such a set follows in section 1.2. The other set, ~C,
represents all of the curves that correspond to the particular
geometry of the object being tracked; that is, this set ~C con-
tains all of the information about the shape of the object’s
silhouette. A discussion of this set is provided at the end
of section 1.2. Given these two sets, a sensible problem to
solve is

min
~e2 ~E;~c2 ~C

k~e� ~ck

where k � k is the L2 norm. The idea is straightforward: the
minimization over the two arguments ensures that the “ob-
served curve” ~e chosen from all of the possible curves in the
image best matches the model of the object being tracked,
as embodied in the set ~C. The tracked object is taken to be
~e�, the minimizing argument. An earlier attempt, on the part
of the authors, to solve a related problem is contained in [4];
the approach presented in the following sections, however,
is much more flexible and robust.

1.2 The Sets ~E and ~C

The set ~E, of curves constructed from edge-points in
the image, is generated as follows. At N equally spaced
points along the detected contour of the previous frame,
edge-search takes place in circular regions (in the image
of the current frame). In each of these regions, a number
of edge-points are detected; denote the set of edge-points
detected in the nth region by En. An element ~e 2 ~E
may be constructed as follows: (1) take one edge-point
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en 2 En from each region n = 1; : : : ; N ; (2) smoothly
interpolate the set of edge-points e1; : : : ; eN into a curve
~e. (The method of interpolation will not concern us here.)
Thus, the set ~E is in one-to-one correspondence with the
set E � E1 � � � � �EN . Suppose there are M edge-points
detected per site, i.e. jEnj = M 8n (in reality, of course,
jEn1 j 6= jEn2 j); then the size of the set of observed curves
is j ~Ej = jEj = MN .

The set ~C is generated from training curves before the
algorithm is run. It is assumed that this set of learned curves
is a finite dimensional manifold (as it will be in all cases that
will be practically encountered), has dimension �, and may
be specified parametrically as

~C = f~c(u) : u 2 Ug

where U is some known, �-dimensional, real, compact,
convex set (for example, U = [0; 1]�), and ~c(�) is a func-
tion which maps the points in U to points in curve space.
Some of the parameters may represent familiar transforma-
tions; for example, u1; : : : ; u6 could represent a subset of
the affine transformations. A particular method for learning
~C will be outlined in section 5; for the moment, it will be
taken as given.

1.3 Recasting the Problem
Using the parametric form for ~C allows the problem to

be rewritten min~e2 ~E;u2U k~e � ~c(u)k. However, approxi-
mating the square of the L2 norm by its Riemann sum gives

k~e� ~ck2 =

Z L

0

k~e(s)� ~c(s)k2ds

�
L

N

NX
n=1

ken � cnk
2

where en = ~e(sn); cn = ~c(sn), and sn = L(n�1)
N�1 . Note

that e1; : : : ; eN is simply the set of edge-points, culled
from the sets E1; : : : ; EN , which were interpolated to give
~e; sampling ~e gives back the original points. Denoting
e = (e1; : : : ; eN) 2 <2N and similarly for c, then the mini-
mization problem may be approximated well by

min
e2E;u2U

ke� c(u)k

if N is sufficiently large. Note that the norm in the above
is the now the normal Euclidean norm in <2N , E = E1 �
� � � �EN as before, and c(�) : <� ! <2N .

The recast problem is still not obviously amenable to so-
lution, as E is still discrete and very large, while U is con-
tinuous. Below, an algorithm is proposed for solving for the
global optimum. In particular, if d� is the value of the global
minimum, then the algorithm will be shown to give a value
of at most d�+�d, for a specified �d. Further, complexity
bounds on the algorithm, in terms of M , N , and �d will
be established. The essence of the algorithm is contained in
the following theorems.

2 Two Theorems on Global Optimization
Before stating the theorems, it will be necessary to make

a number of definitions.

Definition: V is said to be an "-cover of the compact
set U if 8u 2 U , 9v 2 V such that kv � uk � ",
and " is the smallest such value. Alternatively, " =
maxu2U [minv2V kv � uk]. (Note that the maximum is
well-defined since U is compact.)

Definition: Given a compact setU , a set V satisfying jV j <
1 and V � U , and a point v 2 V , let

S(v; V; U) = fu 2 U : kv � uk � kv0 � uk 8v0 2 V g

Definition: An I-depth tree minimization structure
(TMS) is the triple

(U; fVig
I
i=1; f�i(�)g

I
i=2)

satisfying:

1. U is a compact set

2. (a) jVij <1 (b) Vi � U (c) Vi � Vi+1

3. For any i � 2, f�i(vi�1)gvi�12Vi�1
is a partition of

Vi such that (a) vi�1 2 �i(vi�1) (b) S(w; Vi; U) �
S(vi�1; Vi�1; U) 8w 2 �i(vi�1).

Definition: A TMS (U; fVig
I
i=1; f�i(�)g

I
i=2) is said to be

convex if S(v; Vi; U) is convex for all v 2 Vi; i = 1; : : : ; I .

Definition: Let H(u) = @c
@u , so that H(u) 2 <2N�� .

Let �1(u) be the largest eigenvalue of the � � � matrix
HT (u)H(u). Then for any Y � U , define A(Y ) =

[maxu2Y �1(u)]
1=2.

We are now ready to state the theorems which will allow
us to attack the tracking problem, mine2E;u2U ke� c(u)k.
The import of the theorems will be discussed after their for-
mal statements. Note that theorem 1 was initially presented
in [3].

Theorem 1: Let V be any "-cover of U . Further, let d� =
mine2E;u2U ke� c(u)k and let dy = minu2U ke

y� c(u)k,
where ey = argmine2E (minv2V ke� c(v)k). If �d =
dy � d�, then

0 � �d �
3A2(U)"2

d�
+ 2A(U)":

Theorem 2: Given a convex TMS
(U; fVig

I
i=1; f�i(�)g

I
i=2), define:
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1. "i = maxu2U minv2Vi kv � uk

2. X1 = V1

3. di(xi) = mine2E ke � c(xi)k; xi 2 Xi; d�i =
minxi2Xi

di(xi)

4. �Di(xi) = (d2i (xi) � 3A2(S(xi; Vi; U))"2i �
2di(xi)A(S(xi; Vi; U))"i)

1=2; xi 2 Xi

5. Xi+1 =
S
xi2Xi: �Di(xi)<d�i

�i+1(xi)

(Note: fXig
I
i=1 can be generated by recursively applying

3-5, after starting at 2.) Then

min
e2E;x2XI

ke� c(x)k = min
e2E;v2VI

ke� c(v)k

and jXI j � jVI j.

The first theorem presents a problem whose solution is
amenable, and compares the objective function value it gen-
erates with the optimal value, d�. In particular, the problem
mine2E;v2V ke � c(v)k can be solved, albeit inefficiently,
by exhaustive search through the two discrete sets E and V .
If the e-minimizing argument is labelled ey, then the quan-
tity dy = minu2U ke

y � c(u)k is of interest; the fact that
the minimizing u is never solved for does not matter, since
our contour estimate is based on ey rather than c(uy) (see
section 1.1). The theorem gives an upper bound on how far
away dy can be from d�; this bound depends critically on ",
a parameter which indicates how finely V samples U .

The second theorem presents a more efficient way of
solving the problem mine2E;v2V ke � c(v)k, as long as V
can be expressed as VI for an I-depth TMS. In this case, it
is certain that the method presented in theorem 2 is at least
as fast as a “naive method” (the meaning of which is made
clear in section 4) would suggest. While no theoretical com-
plexity bounds have been derived on how much faster this
method is (i.e., the amount by which jVI j exceeds jXI j),
positive experimental results are reported in section 5.

3 Proof of the Theorems

Lemma 1: Xi � Vi.
Proof: Proceed by induction. Since X1 = V1, the lemma
is satisfied trivially for i = 1. Suppose it is true for i = k:
Xk � Vk. Then

Xk+1 =
[

xk2Xk : �Dk(xk)<d�k

�k+1(xk) �
[

xk2Xk

�k+1(xk)

�
[

xk2Vk

�k+1(xk) = Vk+1

where the latter two steps follow from the induction hy-
pothesis and property 3 of the TMS definition, respectively.

Note that this also establishes the second part of theorem 2:
jXI j � jVI j. �

Definition: vi1 2 Vi1 is the ith1 stage ancestor of vi2 2
Vi2 if (a) i1 < i2 and (b) 9 a sequence fvig

i2�1
i=i1+1 with

vi 2 Vi; i = i1 + 1; : : : ; i2 � 1 and vi+1 2 �i+1(vi); i =
i1; : : : ; i2 � 1.

Lemma 2: v� 2 VI �XI ) 9i < I and v�i 2 Vi such that
(a) v�i is the ith stage ancestor of v� and (b) �Di(v

�
i ) � d�i .

Proof: First, note that the condition v� 2 VI � XI only
makes sense because of lemma 1, which establishes that
XI � VI . Now, proceed by contradiction. Then if
v�1 ; : : : ; v

�
I�1 are the first through (I � 1)th stage ances-

tors of v� (note the fact that there is only one ancestor at
each stage due to the fact that the f�i(�)g are bijections)
) �Di(v

�
i ) < d�i 8i = 1; : : : ; I � 1. Now proceed by in-

duction. v�1 2 X1 since X1 = V1. Suppose v�i 2 Xi

for i > 1. Then Xi+1 =
S
xi2Xi: �Di(xi)<d�i

�i+1(xi), so
that �i+1(v

�
i ) � Xi+1. But v�i+1 2 �i+1(v

�
i ) by the an-

cestry definition, so v�i+1 2 Xi+1. Thus by induction,
v� 2 XI . This is a contradiction, since it was assumed
that v� 2 VI �XI . �

Lemma 3: If vi 2 Vi is the ith stage ancestor of v� 2 VI ,
then v� 2 S(vi; Vi; U).
Proof: If vi 2 Vi is the ith stage ancestor of v� 2 VI , then
9 a sequence vi+1; : : : ; vI�1 such that vi+1 2 �i+1(vi). By
property (3b) of the TMS definition vk+1 2 �k+1(vk) )
S(vk+1; Vk+1; U) � S(vk; Vk; U); repeated application for
k = i; : : : ; I � 1 gives S(v�; VI ; U) � S(vi; Vi; U). But
v� 2 S(v�; VI ; U) by definition, so v� 2 S(vi; Vi; U). �

Lemma 4: Let Q � U be a convex, compact set and let R
be an "-covering of Q. Let e1; e2 2 E, di = minu2Q kei �

c(u)k, and ~di = minv2R kei � c(v)k. Then d22 � d21 �
d22 �

~d21 + 3A2(Q)"2 + 2d2A(Q)".
Proof: Make the following definitions: for i = 1; 2, let

� ui = argminu2Q kei � c(u)k; di = kei � c(ui)k

� ~ui = argminv2R kei � c(v)k; ~di = kei � c(~ui)k

� ûi = argminv2R kui � vk; d̂i = kei � c(ûi)k

Then:

d22 � d21 = ke2 � c(u2)k
2 � ke1 � c(u1)k

2

� ke2 � c(û2)k
2 + kc(û2)� c(u2)k

2

� ke1 � c(û1)k
2 + kc(û1)� c(u1)k

2

= d̂22 � d̂21 + kc(û1)� c(u1)k
2 + kc(û2)� c(u2)k

2

where the inequality in the second line is a double applica-
tion of the triangle inequality. Now:
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1. d̂1 � ~d1 by definition, so �d̂21 � � ~d21

2. Expanding d̂22 = ke2 � c(û2)k
2 gives

d̂22 = ke2 � [c(u2) +H(�u2)(û2 � u2)]k
2

where H(u) = @c
@u and �u2 2 Q. This is the multi-

variable mean value theorem, which is valid due to the
convexity of Q [2]. Thus,

d̂22 = ke2 � c(u2)k
2 + kH(�u2)(û2 � u2)k

2

+ 2(e2 � c(u2))
TH(�u2)(û2 � u2)

(a) ke2 � c(u2)k
2 = d22

(b) kH(�u2)(û2 � u2)k
2 = (û2 �

u2)
THT (�u2)H(�u2)(û2 � u2). Since R is

an "-cover of Q, 9v such that ku2 � vk � ". But
by definition û2 = argminv2R ku2 � vk; thus,
kû2 � u2k � ". But then

(û2�u2)
THT (�u2)H(�u2)(û2�u2) � �1(�u2)"

2

�

�
max
u2Q

�1(u)

�
"2 � A2(Q)"2

where �1(�) and A(�) are defined as before.

(c) Finally,

(e2 � c(u2))
TH(�u2)(û2 � u2)

� j(e2 � c(u2))
TH(�u2)(û2 � u2)j

� ke2 � c(u2)kkH(�u2)(û2 � u2)k

where the latter inequality is due to the Cauchy-
Schwartz inequality. But ke2 � c(u2)k = d2 and
from the previous argument kH(�u2)(û2�u2)k �
A(Q)". Thus, (e2 � c(u2))

TH(�u2)(û2 � u2) �
d2A(Q)".

3. Using the mean value theorem once again

kc(ûi)� c(ui)k
2 = kc(ui) +H(�ui)(ûi � ui)� c(ui)k

2

= kH(�ui)(ûi � ui)k
2

� A2(Q)"2

Thus,

d22 � d21 � d22 �
~d21 + 3A2(Q)"2 + 2d2A(Q)": �

Lemma 5: �Di(vi) � d�i ) mine2E ke � c(u)k �
d�i 8u 2 S(vi; Vi; U).
Proof: For any e1; e2 2 E, lemma 4 states that d22 �
d21 � d22 �

~d21 + 3A2(Q)"2 + 2d2A(Q)" ) �d21 �

� ~d1
2
+ 3A2(Q)"2 + 2d2A(Q)". But ~d2 � d2 ) d21 �

~d21 � 3A2(Q)"2 � 2 ~d2A(Q)". Now, choose

e1 = argmin
e2E

�
min
u2Q

ke� c(u)k

�

e2 = argmin
e2E

�
min
v2R

ke� c(v)k

�

Then ~d2 � ~d1 (see the definitions of ~di). Thus

d1 � ( ~d22 � 3A2(Q)"2)1=2 � 2 ~d2A(Q)"

Let Q = S(vi; Vi; U) and R = fvig (i.e., a single element
set). Then ~d2 = di(vi) and d1 = mine2E;u2S(vi;Vi;U) ke�
c(u)k, so that the above inequality becomes

min
e2E;u2S(vi;Vi;U)

ke� c(u)k � �Di(vi)

Finally

�Di(vi) � d�i ) min
e2E;u2S(vi;Vi;U)

ke� c(u)k � d�i

) min
e2E

ke� c(u)k � d�i 8u 2 S(vi; Vi; U): �

Proof of Theorem 1: For any e1; e2 2 E, lemma 4 states
that d22 � d21 � d22 �

~d21 + 3A2(Q)"2 + 2d2A(Q)". How-
ever, d2 � ~d2 so that d22 � d21 �

~d22 �
~d21 + 3A2(Q)"2 +

2d2A(Q)". Now, let Q = U and R = V ; further, let
e1 = e� = argmine2E [minu2U ke � c(u)k] and e2 =
ey = argmine2E [minv2V ke� c(v)k]. Then by definition
~d2 � ~d1, so that ~d22 �

~d21 � 0, and thus

dy2 � d�2 � 3A2(U)"2 + 2dyA(U)"

dy � d� �
3A2(U)"2 + 2dyA(U)"

d� + dy
=

3A2(U)"2

dy
+ 2A(U)"

1 + d�

dy

However, 1=(1 + d�

dy ) � 1 since d� � 0, so that

�d �
3A2(U)"2

dy
+ 2A(U)" �

3A2(U)"2

d�
+ 2A(U)": �

Proof of Theorem 2: Proceed by contradiction. Sup-
pose mine2E;x2XI

ke� c(x)k 6= mine2E;v2VI ke� c(v)k;
in particular, since by Lemma 1 XI � VI , suppose that
d�I � mine2E;x2XI

ke� c(x)k > mine2E;v2VI ke� c(v)k.
Let v� = argminv2VI (mine2E ke � c(v)k); then the pre-
vious supposition implies that v� 2 VI � XI . By Lemma
2, there exists an ith stage ancestor v�i 2 Vi of v�, for some
i < I , such that �Di(v

�
i ) � d�i . But by Lemma 5, it fol-

lows that mine2E ke � c(u)k � d�i 8u 2 S(v�i ; Vi; U).
Lemma 3 asserts that v� 2 S(v�i ; Vi; U); thus, in particular
mine2E ke� c(v�)k � d�i . Finally, note that d�i � d�I ; thus,
mine2E ke� c(v�)k � d�I . This is a contradiction. �
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4 Complexity
The complexity of the optimization procedure is as fol-

lows. With no modification, the problem mine2E;v2V ke�
c(v)k can be solved with brute force substitution with com-
plexity O(MN jV j) since jEj = MN . (Note: it can be
shown that for any compact set U , there exists a finite "-
cover V of that set; thus, the notation jV j makes sense.)
However, if the problem is solved as minv2V [mine2E ke�
c(v)k] and it is noted that

min
e2E

ke� c(v)k2 = min
e12E1;:::;eN2EN

NX
n=1

ken � cn(v)k
2

=

NX
n=1

min
en2En

ken � cn(v)k
2

then the complexity is reduced toO(MN jV j) (since the lat-
ter step has a complexity of O(MN)). Further, using a re-
sult from computational geometry, it can be shown that each
minimization of the form minen2En ken � cn(v)k can be
performed with O(logM) complexity, leading to an overall
complexity of O(N jV j logM). (Note: in order to gain this
log factor, it is necessary to incur O(M logM) in overhead
to calculate the relevant Voronoi diagram; however, this is
negligible in the scheme of things.) It is useful to convert
the complexity O(N jV j logM) into an expression which
depends on M;N , and �d. Use a dimensional argument.
Let V be an "-covering of U ; then using something akin
to sphere-packing, it is clear that vol(U) � jV j"� , where
� = dim(U) = dim(C). That is, jV j / "��. Now, as-
suming that �d is fairly small, then it can be shown that "
is fairly small, so that the upper bound on �d from theorem
1 is proportional to " (that is, the term in "2 drops out). In
this case, the algorithm has complexityO(N�d�� logM).

Thus far, only the results of theorem 1 have been em-
ployed. Incorporating theorem 2 allows for jVI j to be re-
placed by jXI j, that is, for the complexity to be written
O(N jXI j logM). It is assumed that the latter will be
much smaller than the former, although as yet no formal
result to illustrate this has been achieved; at the very least,
jXI j � jVI j is known. In terms of the more relevant param-
eter �d, it is hoped that a result may be proven to show that
the complexity using the algorithm described in theorem 2
is of the form O(N�d�� logM), where � < �; the differ-
ence between � and � will depend heavily on the behaviour
of the manifold ~C .

5. Results and Conclusions
An experiment is performed in which a moving fin-

ger is tracked. Clutter is in the form of both the back-
ground writing (much of which is small, and therefore leads
to many extraneous edges) as well as the self-clutter of
the doubled over finger. The motion of the finger illus-
trates two different kinds of tracking: flexing, which is a

highly nonrigid type of motion, and translation. Further-
more, the motion is relatively fast (flexing takes just over
half a second). The tracker sucessfully follows the fin-
ger for 202 frames, or 6.7 seconds. Results are shown
in figure 1; a full video sequence can be viewed at web-
site http://himmel.hrl.harvard.edu/daniel/research.html. In
terms of speed, typical values for jVI j and jXI j were about
106 and 103 respectively; theorem 2 does indeed provide
considerable speed-up in the complexity.

~C was learned in the following manner. (1) Each train-
ing curve, represented as the 2D coefficients in a pair of
Dth order Legendre polynomial expansions (one each for x
and y), was transformed into its euclidean-similarity invari-
ant, represented in the same basis. (2) A one dimensional
manifold was learned by smoothly interpolating through all
of the invariants. This degree of freedom is captured in
the variable u1. (3) 4 extra dimensions were then added,
corresponding to the group of euclidean similarity transfor-
mations: translation in both x- and y-directions, rotations,
and scaling. These degrees of freedom are represented by
u2; u3; u4; u5. Thus, both ~C and C are five-dimensional
manifolds. U is chosen to be [0; 1]5 for convenience.

For purposes of comparison, a condensation tracker [1]
was also run on the flexing part of the sequence. Training
used the same sequence as the subset tracker, and a reduced
dimensional space derived from applying the Karhunen Lo-
eve transform (in this case, ten dimensions) was used as the
space to learn the dynamical model for flexing. A compar-
ison of the condensation algorithm with the subset tracker
shown in figure 2. Although both trackers succeed in track-
ing for the entire 24 frame (0.8 second) sequence, the con-
tours from the subset tracker are demonstrably clearer and
crisper than those from the condensation tracker. Further
insight into the different performance of the two trackers is
obtained by examining a 20 frame (0.7 second) sequence in
which the finger is almost completely still. As can be seen
in figure 3, the subset tracker is successful in finding the
static finger; the condensation tracker, by contrast, is much
less successful. In particular, while the condensation tracker
never entirely loses lock, it gives results which do not cor-
respond very closely to the finger’s true silhouette. This
is due to the fact that the dynamical model used in con-
densation is learned for a flexing motion, and no “pause”
motion is included in the training sequence. While it may
be argued that a dynamical model could include both types
of motion (indeed, possibly such a switching model could
even be learned from a larger training sequence), this misses
the point. The advantage of an algorithm which makes no
use of dynamical models is precisely that the exact type of
motion that will be encountered in a given application of-
ten cannot be anticipated. If all modes of motion could be
entirely anticipated, then the tracking problem would be a
much simpler one. In this case, one very simple non-learned
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frame 30 frame 45 frame 80 frame 120 frame 154

Figure 1. Tracking a flexing and translating finger.

frame 8 frame 12 frame 15 frame 18 frame 21

Figure 2. Condensation tracker (above) vs. subset tracker (below).

mode, namely no motion at all, was tracked; the conden-
sation tracker is unable to deal with this, while the subset
tracker, which does not rely on dynamics, is successful.

frame 6 frame 13

Figure 3. Condensation tracker (above) vs.
subset tracker (below).

There are two principal directions for future research.
First, the development of an algorithm for learning a mul-
tidimensional manifold would be of benefit. In the current
experiments, a one-dimensional manifold was learned in in-
variant space; however, it is quite likely that the true man-
ifold was of higher dimension. (In this scenario, the one-
dimensional manifold is simply a subset of the higher di-
mensional manifold.) Success in this area would also allow
for more efficient implementation of the algorithm. Second,

the algorithm may be extended to the task of object localiza-
tion, in which an object is to be located within a single still
image, rather than a video-sequence . Edge-search can no
longer be initiated at the previous frame’s contour estimate,
as there is no such estimate; thus, in principle any edge-
point in the image may be potentially part of the relevant
curve. In other words, for each n, the set En of edge-points
at the nth site must include all edge-points detected in the
image. Thus, jEnj = M is very much larger than in the
case of tracking. The ability to search through the resulting
huge space of observed curves ~E relies on the logM term
in the complexity, as discussed in section 4.
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