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Abstract

A new tracker is presented. Two sets are identified: one
which contains all possible curves as found in the image,
and a second which contains all curves which character-
ize the object of interest. The former is constructed out of
edge-pointsin theimage, while the latter islearned prior to
running. The tracked curve is taken to be the element of the
first set which is nearest the second set. The formalism for
thelearned set of curves allows for mathematically well un-
derstood groups of transformations (e.g. affine, projective)
to be treated on the same footing as less well understood
deformations, which may be learned from training curves.
An algorithmis proposed to solve the tracking problem, and
its properties are theoretically demonstrated: it solves the
global optimization problem, and does so with certain com-
plexity bounds. Experimental results applying the proposed
algorithm to the tracking of a moving finger are presented,
and compared with the results of a condensation approach.

1 Introduction

This work addresses the tracking of moving contoursin
avideo-stream. Specifically, given a sequence of imagesin
which a known object of interest is in motion, the goal is
to track the object’s silhouette across time-varying images.
Applications abound in medicine, surveillance, and audio-
visual speech recognition for noisy environments.

A standard approach to tracking is embodied in the con-
densation tracker [5, 1], which relies heavily on an a pri-
ori knowledge of the dynamics of the tracked object. In
this paper, a more realistic assumption is made: a priori
knowledge of the space in which the tracked object livesis
assumed, but not the dynamics within that space. Section
1 outlines the general approach to the problem of track-
ing with only knowledge of the space in which the object
lives: tracking is posed a mixed continuous-combinatorial
optimization problem. Section 2 states two theoremswhich
allow this optimization problem to be attacked. The first
theorem shows that it is possible to almost reach the global
minimum, while the second theorem shows that it can be
done efficiently. Section 3 presents proofs of these theo-
rems. Section 4 presents complexity bounds on the speed
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of the algorithm. Section 5 shows results: the advantage of
the proposed approach over one based on dynamicsis seen
in experiments.

1.1 TheProblem

In tracking an object through a video-stream, the ap-
proach taken will be to focus entirely on the object’s con-
tour, or outline. Thus, the problem of tracking reduces to
one of finding the “correct” curve in the image, i.e. the
curve which corresponds to the object of interest. Suppose
it is possible to generate two sets of curves. Oneset, E, rep-
resents all of the curvesthat can be generated from the con-
nection of edge-pointsin the image; a description of how to
produce such a set follows in section 1.2. The other set, C,
represents all of the curvesthat correspond to the particular
geometry of the object being tracked:; that is, this set C' con-
tains al of the information about the shape of the object’s
silhouette. A discussion of this set is provided at the end
of section 1.2. Given these two sets, a sensible problem to
solveis

min _|[|é — ¢
écE e

where|| - || isthe L, norm. Theideais straightforward: the
minimization over the two arguments ensures that the “ ob-
served curve” é chosen from all of the possible curvesin the
image best matches the model of the object being tracked,
as embodied in the set C. The tracked object is taken to be
é*, theminimizing argument. An earlier attempt, on the part
of the authors, to solve arelated problemiscontainedin[4];
the approach presented in the following sections, however,
is much more flexible and robust.

1.2 TheSetsE and C

The set E, of curves constructed from edge-points in
the image, is generated as follows. At N equally spaced
points along the detected contour of the previous frame,
edge-search takes place in circular regions (in the image
of the current frame). In each of these regions, a number
of edge-points are detected; denote the set of edge-points
detected in the n'" region by E,. An dementé € E
may be constructed as follows: (1) take one edge-point



en € E, fromeachregionn = 1,..., N; (2) smoothly
interpolate the set of edge-points ey, ...,en into a curve
é. (The method of interpolation will not concern us here.)
Thus, the set E is in one-to-one correspondence with the
set E = E, x --- x En. Supposethere are M edge-points
detected per site, i.e. |E,| = M Vn (in redlity, of course,
|Eny | # |En, |) then the size of the set of observed curves
is|E| = |E| =

The set C' is generated from training curves before the
algorithmisrun. Itisassumed that thisset of learned curves
isafinitedimensional manifold (asit will bein all casesthat
will be practically encountered), has dimension ¢, and may
be specified parametrically as

C={éu):ucU}

where U is some known, o-dimensional, real, compact,
convex set (for example, U = [0, 1]7), and ¢&(-) is a func-
tion which maps the points in U to points in curve space.
Some of the parameters may represent familiar transforma-
tions; for example, u1, ..., ug could represent a subset of
the affine transformations. A particular method for learning
C will be outlined in section 5; for the moment, it will be
taken as given.

1.3 Recasting the Problem

Using the parametric form for C' alows the problem to
be rewritten min; 5 . [€ — é(u)||. However, approxi-

mating the square of the L, norm by its Riemann sum gives
L

18(s) — &(s)1*ds

I N
N Z llen — cn||2

where e, = é(s,),cn = &(sn), and s, = “—~. Note
that e1,...,en is smply the set of edge-points, culled
fromthe sets Fy, . .., En, which were interpolated to give
é; sampling é gives back the original points. Denoting
e= (e1,...,en) € R?N and similarly for ¢, then the mini-
mization problem may be approximated well by

le—el* =

o~

L(n—1)

Jpin e —c(u)]
if V issufficiently large. Note that the norm in the above
is the now the normal Euclidean normin R2V, E = E; x
-+ x Ey asbefore,and c(-) : R7 — R2V.

Therecast problemis still not obviously amenableto so-
lution, as E is still discrete and very large, while U is con-
tinuous. Below, an algorithmis proposed for solving for the
global optimum. In particular, if d* isthe value of the global
minimum, then the algorithm will be shown to give avalue
of at most d* + Ad, for aspecified Ad. Further, complexity
bounds on the agorithm, in terms of M, N, and Ad will
be established. The essence of the algorithmis contained in
the following theorems.
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2 Two Theorems on Global Optimization

Before stating the theorems, it will be necessary to make
anumber of definitions.

Definition: V' is said to be an e-cover of the compact
st U if Vu € U, v € V such that |j[v — u|| < ¢,
and ¢ is the smallest such value. Alternatively, ¢ =
maxyey [mingey ||v — ul|]. (Note that the maximum is
well-defined since U is compact.)

Definition: Givenacompactset U, aset V satisfying |V | <
occandV C U,andapointv € V, let

S, V,U)={ueU:|v—ul| <[ —ul]| Vo' € V}

Definition: An I-depth tree minimization structure
(TMYS) isthetriple

(U AV, {6}y
satisfying:
1. U isacompact set
2. @ Vil <oo(@ViCU(Q)V; C Vipa

3. Forany i > 2, {¢i(vi—1)}v,_,ev;_, IS apartition of
Vi such that (&) vi—1 € ¢i(vi—1) (b) S(w,V;,U) C
S(vi—1,Vie1,U) Yw € ¢(vi—1).

Definition: A TMS (U, {Vi}._;, {#:(-)}L,) issaid to be
convex if S(v,V;,U) isconvexforalv e V;;i=1,...,1.

Definition: Let H(u) = 2%, so that H(u) € R2NV*7.
Let A;(u) be the largest eigenvalue of the o x o matrix
HY(u)H(u). Then for any Y C U, define A(Y) =

[maxyey Ar(w)]/?.

We are now ready to state the theoremswhich will allow
us to attack the tracking problem, min.c g vweuv ||le — c(u)]|.
Theimport of thetheoremswill be discussed after their for-
mal statements. Note that theorem 1 was initially presented
in[3].

Theorem 1: Let V be any e-cover of U. Further, let d* =
mineep uev ||e — c(uw)|| andlet df = min,ep [lef — c(u)]],

where ef = argmin.cp (minyey |le — c()]]). If Ad =
dt — d*, then
2 2
0<Ad< % +24(U)e.
Theorem 2 Given a convex TMS

(U, {Vi}1, {6:i()},), define:



1. g; = maxyey mingey; ||v — ul|

2. X1 - Vl
3. di(xz;) = mineeglle — c(x)|, z € Xy df =
minxiEXi d,’(l‘i)

(d2(z;) — 3A4%(S(w:,Vi,U))e? —

U))e)'/?, z; € X;
5 Xiy1 = UwieXi:Di(winf Git1(wi)

(Note: {X;}L_, can be generated by recursively applying
3-5, after starting at 2.) Then

emin e —c(2)l = _min le = c(v)]
and | X[ < [Vil.

The first theorem presents a problem whose solution is
amenable, and comparesthe objectivefunction valueit gen-
erates with the optimal value, d*. In particular, the problem
min.ecr vev ||e — ¢(v)]| can be solved, albeit inefficiently,
by exhaustive search through the two discrete sets E and V.
If the e-minimizing argument is labelled e, then the quan-
tity d' = min,ey |lef — c(u)]|| is of interest; the fact that
the minimizing u is never solved for does not matter, since
our contour estimate is based on ef rather than c(u') (see
section 1.1). The theorem gives an upper bound on how far
away d' can be from d*; this bound depends critically on e,
a parameter which indicates how finely V' samples U.

The second theorem presents a more efficient way of
solving the problem min.c g yev |le — c(v)||, aslongas V'
can be expressed as V; for an I-depth TMS. In this case, it
is certain that the method presented in theorem 2 is at |east
as fast as a“naive method” (the meaning of which is made
clear in section 4) would suggest. While no theoretical com-
plexity bounds have been derived on how much faster this
method is (i.e., the amount by which |V;| exceeds | X;|),
positive experimental results are reported in section 5.

3 Proof of the Theorems

Lemmal: X; CV,.

Proof: Proceed by induction. Since X; = Vi, the lemma
is satisfied trivially for ¢ = 1. Supposeitistruefor i = k:
Xy C Vi. Then

Xen= U
@k €Xp: Dy (wr) <dj

- U Gr+1(Tr) = Vit

TR €V

drra(ar) C | drrr(an)

TR EXp

where the latter two steps follow from the induction hy-
pothesis and property 3 of the TM S definition, respectively.
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Note that this al so establishes the second part of theorem 2:
|Xr[ < |Vi]. W

Definition: v;, € V;, isthei{" stage ancestor of v;, €
Vi, if (8 i1 < 4> and (b) 3 a sequence {v;}27', | with
vieVii=1d1+1,.. .0 —land vy € ¢iqr(v5), i =
iy in — 1.

Lemma2: v* € V; — X1 = 3i < I and v € V; such that
(a) v} isthe i*" stage ancestor of v* and (b) D;(v}) > d}.
Proof: First, note that the condition v* € V; — X only
makes sense because of lemma 1, which establishes that
X; C Vi. Now, proceed by contradiction. Then if
v%,...,v}_, arethe first through (I — 1)*" stage ances-
tors of v* (note the fact that there is only one ancestor at
each stage due to the fact that the {¢;(-)} are bijections)
= D;(vf) < df Vi =1,...,I —1. Now proceed by in-
duction. v{ € X; since X; = Vi. Suppose v} € X;
fors > 1. Then Xi+1 = UwiEXiIDi(Ii)<df ¢i+1(~7;i)! SO
that ¢;1(v;7) C Xip1. But iy, € éiya(v]) by the an-
cestry definition, so v;,; € X;y1. Thus by induction,
v* € Xy. Thisis a contradiction, since it was assumed
thaav* e Vi—X;. W

Lemma 3: If v; € V; istheit” stage ancestor of v* € Vi,
thenv* € S(v;, Vi, U).

Proof: If v; € V; isthe it" stage ancestor of v* € V7, then
Jasequence viti, - - .,vr—1 suchthat v;41 € ¢i41(v;). By
property (3b) of the TMS definition v11 € ¢pr1(vg) =
S(Vk+1, Vir1,U) C S(vk, Vi, U); repeated application for
k=4i,...,I —1givesS(v*,V;,U) C S(v;,V;,U). But
v* € S(v*, Vi, U) by definition, sov* € S(v;, V;,U). R

Lemma4: Let Q C U beaconvex, compact set and let R
be an e-covering of Q). Leteq,es € E, d; = miny,eg ||e; —
c(u)]], and d; = min,cp ||le; — c(v)||. Then d3 — d&? <
A2 — d? + 3A%(Q)e? + 2dr A(Q)e.

Proof: Make the following definitions: for i = 1, 2, let

o u; = argmingeg ||le; — c(w)||, di =|le; — c(u;)||
e i; = argmin,ep |le; — c(v)|], di = |le; — ()|
e {; = argmin,eg ||lu; — v||, d; = lle: — (@)l
Then:
&y — di = |lez — c(u2)|* = ller — c(wr)|]?

U2)
< llex = e(@)l* + lle(iz) — c(us)|”
= llex = e@)l? + lle(an) = c(un)|®
= d3 — di +|le(@n) — c(ur) | + [le(@s) — c(un)|)”

where the inequality in the second line is a double applica-
tion of the triangle inequality. Now:



1. dy > dy by definition, so —d2? < —d?2
2. Expanding d2 = ||les — c(d2)||? gives
= |lez — [e(u2) + H (i) (d2 — us)]|”

where H(u) = 2¢ and ii; € Q. Thisis the multi-
variable mean value theorem, which isvalid dueto the
convexity of @) [2]. Thus,

= |lez — c(u2)|]? + || H (ti2) (G2 — u2)]?
+ 2(es — c(un)) " H(ii2) (i — u2)

@ llez — c(u2)|)* = a3

(o) |H (t2)(d2 — w2l = (a2 —
Uz)THT(’liz)H('Lvtz)(ﬁz — Uz). Since R is
an e-cover of ), Jv such that ||uz — v|| < €. But
by definition 4, = argmin,eg ||uz — vl|; thus,
||’0,2 — U2|| <e. But then

('ELz—Uz)THT(’IiQ)H('Lvtz)('ELz—Uz) S )\1 (’17/2)82
< (Ilfleaé( A1 (u)) e? = A%(Q)e?

where A; () and A(-) are defined as before.
(c) Finally,

(€2 — (un)) " H (i) (@2 — u2)

< |(e2 = c(us))" H (it2) (k2 — o)
< [lea — cu)[|[| H (t2) (G2 — us)|
where the latter inequality is due to the Cauchy-
Schwartz inequality. But ||es — c(us)|| = d2 and
fromthepreviousargument || H (az) (G2 —u2)|| <
A(Q)e. Thus, (eg — c(u2))T H (ii2) (2 — us) <
dgA(Q)E

3. Using the mean value theorem once again

= ||H (i) (G5 — w;)|]?
< A*(Q)e?

Thus,

di —d} < &5 — & +34%(Q)e* +2drA(Q)e. M

Lemma 5. D;(v;) > df = mineeplle — c(u)]]
df Vue S, Vi, U).

Proof: For any e;,es € E, lemma 4 states that d3
B < dE— @+ 342(Q)e® + 2dAQ)e = —d?

v

IN
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c(ig) = c(ug)||* = lle(us) + H (i) (s — us) — c(w;)|”

—d,” + 3A%(Q)e? + 2 A(Q)e. Butdy > dy = & >
d? — 3A%(Q)e? — 2d>A(Q)e. Now, choose

er = arg iy (i e - ()

ecE

ez = argmin (mln lle — (v )||>

Thend, < d, (seethe definitions of d;). Thus
d > (d5 = 34%(Q)e*)"/* = 2d,A(Q)e
LetQ = S(v;, Vi, U) and R = {v;} (i.e., asingle element

wt) Then d2 = dl(vz) and dl = min6€E7u€S(vi7‘/i7U) ||€ —
c(u)]|, so that the aboveinequality becomes

min e — el > Di(v:
e€EueS(vi,V;,U) | (w)|| > D;i(vs)

Finally

Di(v;) > d; = min
e€E,ueS(v;,Vi,U)

= Iré%l lle = c(u)|| > d; Yu € S(v;, Vi, U).

lle = c(w)ll = d;

Proof of Theorem 1: For any eq,e; € E, lemma4 states
that d3 — d3 < d3 — di + 34%(Q)e? + 2d>A(Q)e. How-
ever, d» < do S0 that d2 —d? < &2 — &2+ 3A2(Q)e? +
2d2A(Q)s. Now, let Q = U and R = V; further, let
er = € = argmin.cg[min,ey|le — c(u)||] and e =
el = argmin,cp[min,cy [le — ¢(v)]|]]. Then by definition
dy < dy, sothat d3 — d? < 0, and thus

d? — d? < 34%(U)e% + 2dTA(U)e

gt g < 3O 20 AU _ US4 9AU)e

- d* + dt 1+df

However, 1/(1 + &) < 1 sinced* > 0, so that

3A%(U)e?
df

3A2(U)e?

Ad <
- d*

+24(U)e < +24(U)e.

Proof of Theorem 2: Proceed by contradiction. Sup-
pose minep ge x, |le — ¢(2)|| # minee s vevy [le — ()]l
in particular, since by Lemma 1 X; C V;, suppose that
dy = mineep zex, |le — c(@)|| > mineepvev, |le —c(v)]]-
Let v* = argmin,ey, (min.ecg [le — ¢(v)|]); then the pre-
vious supposition implies that v* € Vi — X;. By Lemma
2, there exists an i*" stage ancestor v; € V; of v*, for some
i < I, suchthat D;(v}) > df. But by Lemmas, it fol-
lows that min.cp |le — c(u)|| > df Yu € S(v},V;,U).
Lemma 3 assertsthat v* € S(v}, Vi, U); thus, in particular
mineg ||e — c(v*)|| > d. Finaly, notethat df > dj; thus,
mineg ||e — c(v*)|| > d}. Thisisacontradiction. W



4 Complexity

The complexity of the optimization procedure is as fol-
lows. With no modification, the problem min.cg yev ||e —
¢(v)|| can be solved with brute force substitution with com-
plexity O(M™N|V|) since |E| = MY. (Note: it can be
shown that for any compact set U, there exists a finite -
cover V' of that set; thus, the notation |V| makes sense.)
However, if the problemis solved asmin,c v [min.cg ||e —
c(v)||] and it is noted that

N
I eleEITfENeEN _1||€n cn (V)]

it [le - ¢(v)

N
_ : _ 2
=3 min [len — ca(v)]
n=1

then the complexity isreducedto O(M N|V'|) (sincethelat-
ter step has a complexity of O(M N)). Further, using are-
sult from computational geometry, it can be shown that each
minimization of the form min. cg, |le, — ¢, (v)|| can be
performed with O (log M) complexity, leading to an overall
complexity of O(N|V|log M). (Note: in order to gain this
log factor, it is necessary to incur O(M log M) in overhead
to calculate the relevant Voronoi diagram; however, thisis
negligible in the scheme of things.) It is useful to convert
the complexity O(N|V'|log M) into an expression which
depends on M, N, and Ad. Use a dimensional argument.
Let V' be an e-covering of U; then using something akin
to sphere-packing, it is clear that vol(U) = |V|e”, where
o = dim(U) = dim(C). Thatis, |V| < e~?. Now, as-
suming that Ad isfairly small, then it can be shown that ¢
isfairly small, so that the upper bound on Ad from theorem
1is proportional to e (that is, the term in 2 drops out). In
this case, the algorithm has complexity O(N Ad~7 log M).

Thus far, only the results of theorem 1 have been em-
ployed. Incorporating theorem 2 allows for |V;]| to be re-
placed by |X/|, that is, for the complexity to be written
O(N|Xr|log M). It is assumed that the latter will be
much smaller than the former, although as yet no formal
result to illustrate this has been achieved; at the very least,
| X1 <|Vi|isknown. Interms of the more relevant param-
eter Ad, it is hoped that aresult may be proven to show that
the complexity using the algorithm described in theorem 2
is of theform O(NAd—F log M), where 3 < o; the differ-
ence between 3 and o will depend heavily on the behaviour
of the manifold C.

5. Results and Conclusions

An experiment is performed in which a moving fin-
ger is tracked. Clutter is in the form of both the back-
ground writing (much of which is small, and thereforeleads
to many extraneous edges) as well as the sdlf-clutter of
the doubled over finger. The motion of the finger illus-
trates two different kinds of tracking: flexing, which is a
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highly nonrigid type of motion, and translation. Further-
more, the motion is relatively fast (flexing takes just over
half a second). The tracker sucessfully follows the fin-
ger for 202 frames, or 6.7 seconds. Results are shown
in figure 1; a full video sequence can be viewed at web-
site http://himmel.hrl.harvard.edu/daniel/research.html. In
terms of speed, typical valuesfor |V;| and | X ;| were about
10% and 10? respectively; theorem 2 does indeed provide
considerable speed-up in the complexity.

C was learned in the following manner. (1) Each train-
ing curve, represented as the 2D coefficients in a pair of
Dt" order Legendre polynomial expansions (one each for z
and y), was transformed into its euclidean-similarity invari-
ant, represented in the same basis. (2) A one dimensional
manifold was learned by smoothly interpolating through all
of the invariants. This degree of freedom is captured in
the variable u;. (3) 4 extra dimensions were then added,
corresponding to the group of euclidean similarity transfor-
mations. trandation in both x- and y-directions, rotations,
and scaling. These degrees of freedom are represented by
o, us, wg,us. Thus, both C' and C are five-dimensional
manifolds. U is chosen to be [0, 1]° for convenience.

For purposes of comparison, a condensation tracker [1]
was aso run on the flexing part of the sequence. Training
used the same sequence as the subset tracker, and a reduced
dimensional space derived from applying the Karhunen L o-
evetransform (in this case, ten dimensions) was used as the
space to learn the dynamical model for flexing. A compar-
ison of the condensation agorithm with the subset tracker
shown in figure 2. Although both trackers succeed in track-
ing for the entire 24 frame (0.8 second) sequence, the con-
tours from the subset tracker are demonstrably clearer and
crisper than those from the condensation tracker. Further
insight into the different performance of the two trackersis
obtained by examining a 20 frame (0.7 second) sequencein
which the finger is almost completely till. As can be seen
in figure 3, the subset tracker is successful in finding the
dtatic finger; the condensation tracker, by contrast, is much
less successful. In particular, while the condensation tracker
never entirely loses lock, it gives results which do not cor-
respond very closely to the finger's true silhouette. This
is due to the fact that the dynamical model used in con-
densation is learned for a flexing motion, and no “pause”
motion is included in the training sequence. While it may
be argued that a dynamical model could include both types
of motion (indeed, possibly such a switching model could
even belearned from alarger training sequence), this misses
the point. The advantage of an algorithm which makes no
use of dynamical models is precisely that the exact type of
motion that will be encountered in a given application of-
ten cannot be anticipated. If all modes of motion could be
entirely anticipated, then the tracking problem would be a
much simpler one. Inthiscase, onevery simple non-learned
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Figure 1. Tracking a flexing and translating finger.
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Figure 2. Condensation tracker (above) vs. subset tracker (below).

mode, namely no motion at all, was tracked; the conden-
sation tracker is unable to deal with this, while the subset
tracker, which does not rely on dynamics, is successful.
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Figure 3. Condensation tracker (above) vs.
subset tracker (below).

There are two principal directions for future research.
First, the development of an algorithm for learning a mul-
tidimensional manifold would be of benefit. In the current
experiments, a one-dimensional manifold waslearnedinin-
variant space; however, it is quite likely that the true man-
ifold was of higher dimension. (In this scenario, the one-
dimensional manifold is simply a subset of the higher di-
mensional manifold.) Successin this areawould also allow
for more efficient implementation of the algorithm. Second,
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the algorithm may be extended to thetask of object localiza-
tion, in which an object is to be located within asingle till
image, rather than a video-sequence . Edge-search can no
longer be initiated at the previous frame’s contour estimate,
as there is no such estimate; thus, in principle any edge-
point in the image may be potentialy part of the relevant
curve. In other words, for each n, the set E,, of edge-points
at the nt" site must include all edge-points detected in the
image. Thus, |E,| = M is very much larger than in the
case of tracking. The ability to search through the resulting
huge space of observed curves E relies on the log M term
in the complexity, as discussed in section 4.

References

[1] A. Blake and M. Isard. Condensation - conditional density

propagation for visua tracking. Int. J. Comp. Ms., 29(1):5—

28, 1998.

W. Boothby. An Introduction to Differentiable Manifolds and

Riemannian Geometry. Academic Press, San Diego, 2nd edi-

tion, 1986.

D. Freedman and M. Brandstein. Methods of globa opti-

mization in the tracking of contours. In Proceedings of the
33rd Asilomar Conference on Signals, Systems, and Comput-
ers, 1999.

D. Freedman and M. Brandstein. A subset approach to con-
tour tracking in clutter. In Proceedings | CCV, pages 242247,
1999.

M. Isard and A. Blake. Contour tracking by stochastic prop-
agation of conditional density. In Proceedings ECCV, pages

343-356, 1996.

(2]

(3]

(4]

(9]



