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Abstract

A new algorithm for manifold reconstruction is pre-
sented. The goal is to take samples drawn from a finite-
dimensional manifold, and to reconstruct a manifold, based
only on the samples, which is a good approximation to the
true manifold; nothing of the true manifold’s geometry or
topology is known a priori. The algorithm constructs a
simplicial complex based on approximating tangent hyper-
planes to the manifold, and does so efficiently. Success-
ful examples are presented for curve reconstruction in the
plane, curve reconstruction in space, and surface recon-
struction in space.

1 Introduction

This paper is concerned with the problem of manifold
reconstruction. This is a problem in computational geome-
try/topology which may be posed as follows:

Manifold Reconstruction Problem

Given a dense sampling X of some K-dimensional
compact C' manifold F which is embedded in a
Hilbert space Z, construct a K-dimensional compact
manifold R which approximates F' well.

Such a formulation is not complete, in the sense that many
concepts such as “good approximation” remain vague; these
issues will be cleared up shortly. For the moment, let us fo-
cus on practical applications of the manifold reconstruction
problem, as well as some of the difficulties inherent in find-
ing a solution.

Manifold reconstruction is important in several areas.
First, curve reconstruction schemes are often useful in com-
puter vision and image processing, where one is presented
with a series of unorganized edge-points, and wishes to join

these points into a curve. Surface reconstruction is useful in
CAD and computer graphics, where points in R? are given,
and the desired output is a surface. An application is “re-
verse engineering,” where a machine part is scanned with
a laser range finder, and a model of the object’s geometry
is automatically generated. Finally, the general problem of
manifold reconstruction may be construed as a particular
form of learning. For example, one may wish to learn the
set of all possible curves corresponding to the outlines of
a particular object; in many cases, this set will correspond
to a manifold in curve-space. Thus, the goal is to learn a
finite-dimensional manifold (embedded, in this case, in an
infinite-dimensional space) from training examples.

Having posed the problem, some of its challenges may
now be discussed. The key problem faced by the designer
of a manifold reconstruction algorithm is that the sample
points X are unorganized. That is, no relationship amongst
the points is known beforehand. This difficulty is seen most
easily in the context of what might seem, at first blush, a
simple problem: trying to reconstruct a curve embedded in
R? from its samples. If the points are organized, i.e., the
adjacency relationship between samples is known, then re-
construction is completely straightforward. This situation
isn’t particularly interesting because it is quite obvious that
the more finely sampled the true manifold is, the closer the
reconstruction will be to the original; this is just a matter
of calculus. However, suppose that the adjacency relation-
ship amongst the points is not known. In this case, the issue
of how to reconstruct the curve is not at all clear. Should
we attach all samples to their nearest neighbours? Should
we instead begin by connecting a single point to its nearest
neighbour, and then connect that point to is nearest neigh-
bour except for the one already attached, and so on? It
is fairly easy to think of examples which expose the flaws
of these simple greedy schemes; and since we don’t know
anything about the true manifold F', except for its dimen-
sion, then it seems foolhardy to employ algorithms which
are known not to work on some cases. Furthermore, we
have been looking at the “relatively straightforward” case



provided by curves embedded in two dimensions. What of
more complex cases, such as 7-manifolds embedded in R32;
or K-manifolds embedded in function spaces? In this case,
it is not at all easy to think of heuristic algorithms like the
one mentioned above. As a result, sophisticated algorithms,
which possess mathematical properties which are amenable
to analysis, must be elaborated if we are to have a chance of
solving the manifold reconstruction problem.

The outline of this paper is as follows. Section 2 will
review the existing literature in the field of manifold recon-
struction. While the problem has not been solved, several
special cases have been, and these will be discussed. Sec-
tion 3 outlines the new approach. The algorithm’s proper-
ties, including those related to complexity, are discussed in
section 4. Results are shown and conclusions are drawn in
5.

2 Review of Existing Literature

Very little work has been done in terms of solving the
problem of manifold reconstruction in a rigourous way.
Principal components analysis is a very simple stab at this
kind of problem, but it makes the highly unsatisfactory as-
sumption that the manifold is linear, which will not gen-
erally be the case. Bregler and Omohundro [5] attack a
related type of problem, but do not give any provable re-
sults. Furthermore, their method is problematic in that the
object it generates is not truly a manifold, as it may have
varying dimension in different parts. The graphics litera-
ture [8, 7, 6] presents several examples of attempts to re-
construct surfaces (2-manifolds) embedded in R?; these re-
sults, while often effective practically, are neither provable,
nor extensible to the general case. More recently, Amenta
[2, 1] has solved the manifold reconstruction problem, as
posed above, for the special cases of reconstructing curves
(1-manifolds) in R? and surfaces in R®. Her solutions
have used machinery from computational geometry, both in
terms of construction and proofs. Other papers in a similar
vein have followed suit [3, 4].

3 TheAlgorithm

Before outlining the algorithm, several clarifications
must be made to the problem formulation given on page 1.
First, we say that the manifold R is a good approximation
to the manifold F' if (1) R is homeomorphic to F' and (2)
d(R, F) is sufficiently small, where d(-, -) is an appropriate
metric (such as the symmetric Hausdorff distance). Second,
the notion of density is not spelled out explicitly here; how-
ever, the relevant notion is probably that of local feature
size, as used by Amenta [2, 1]. Third, the reconstruction
R will be a C9, rather than a C'' manifold; in particular,

R will be a simplicial complex. Diffeomorphism between
the original and reconstructed manifolds is a goal of future
research.

Let us begin by establishing the basic notation. The em-
bedding space is Z; the manifold is £; the sampling of the
manifold is X. X C F C Z, with | X| < oco. Recall that
the embedding space is restricted to be a Hilbert space. The
goal of the algorithm is to construct a simplicial complex
based only on X, denoted SC'(X). The algorithm consists
of four steps.

Step 1: Finding Neighbourhoods

The goal is to find the neighbourhood N BD(z) for each
point z € X, where NBD(z) C X. This step is quite
simple: out of the entire sampling X, NBD(z) is defined
to be the K closest points to z, where » > 1 and K is
the manifold dimension. r is the single parameter in the
algorithm; it is expected that the validity of the algorithm
will depend on the choice of » and the sampling density.

Step 2: Finding Tangent Hyperplanes

The goal is to find an approximation to the tangent hyper-
plane at each point z € X. In fact, however, this will often
only be possible at a subset of points in X'; the reasons for
this, and its significance will become clear shortly. In or-
der to find the approximating tangent hyperplane at z,
denoted AT H (x), we must make use of the following defi-
nition.

Definition: A point x is said to be enclosed by the
K + 1 points {z;}X, if the projection of = onto the
K -dimensional hyperplane running through {z;}X, is
contained within the K-dimensional simplex defined by

{xi}fio-

It will be useful to have a simple method for testing the
enclosure property on a given set of points. Note that the
hyperplane running through {z;}X , is given by

span{z1 — zo,..-,Tx — To} + Tg

Indeed, any point on the hyperplane may be given by
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where Q; = x; — 2o and X is a K x 1 column vector which
can take on any value in R¥. Now, the projection problem
is specified as
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This can be solved as follows:
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where ( = x — g, ¥ is a Hermitian K x K matrix given by
U, = (4, Q) and ¢ is a K x 1 column vector given by
Vi = $((Qi, ¢) + (¢, Q). This may be now be minimized
to yield
)\* — \I!_I’L/J

Finally, if we define 6o = 1 — Y1 Arand 6, = \?, i =
1,..., K, then the condition that z is enclosed by {z;} X,
is equivalent to the condition

0<6;,<1, i=0,....K

which is quite easy to test.
Given the enclosure property, an algorithm for calculat-
ing AT H () may now be specified.

Definition: A set of K + 1 points {x;} X, which are drawn
from the neighbourhood of z, NBD(z), is said to be a
tangent basis for the point z € X if (a) = is enclosed by
{x;}X, and (b) no other point in NBD(z) is enclosed by
{x;}K,. A shifted version of the hyperplane defined by
{z;} K, namely span{z1 —xo, . . ., Tk —x0 }+, is referred
to as z’s approximate tangent hyperplane, or AT H(x).
Note that z € AT H (x).

It may be the case that a point = has no approximating tan-
gent hyperplane; in this case, we declare z to belong to the
boundary.

Definition: Any point 2 which has no tangent basis is said
to belong to the boundary, denoted BD.

Let p : NBD(z) — {1,...,7K} be the ordering of
the points in the NBD(z) in terms of their proximity to z;
i.e., if p(2) = 1, then & is the closest point to z. Then the
algorithm is as in figure 1.

Note that this algorithm for calculating the approximate
tangent hyperplane, as based on the enclosure property, is
an intuitive one. The idea is that the ATH is best approxi-
mated by a nearby secant, where the correct notion of close-
ness is given by enclosure; this is essentially inspired by the
intermediate value theorem.

Step 3: Calculating the Local Region and Edge-Set

The goal is to find the little patch of the manifold which con-
tains z. As stated, this is, of course, ill-defined; however, a
particular definition of the local region will be given which
is useful in calculating the simplicial complex SC(X).

Definition: The perpendicular bisecting halfspace of the
point z € X with respect to the point ' € X is denoted by

Letz = 0.
Do
(Ggy. .. iK) = argmin S ik
1<i <rKio < <ix, 8 g >z
Ty :pfl(ik) k=0,....K
TB = {z1};

OTH = NBD(z) — {z} - TB
K

Z2=3 ok
Until (z is enclosed by T'B) and (32 € OT H which
is enclosed by T'B)
fiy=r—k k=0,...,K
x € BD
else

ATH (z) = span{z1 — xo, ..., Tk — Xo} + .

end

Figure 1. The algorithm for calculating the ap-
proximating tangent hyperplane atz, AT H(z).

PBH(z,z') and is given by
PBH(z,a") = {2 € Z ||z — zl| < ||z — '||}

Definition: The local region of z € X — BD, denoted
LR(z), is given by

LR(z)= | (| PBH(z,2')

z'eX

() ATH(z)

Note that the local region is only defined for points that
are not in the boundary; and that the local region is K-
dimensional, as AT H (z) is K-dimensional, and that z €
LR(z) (sincex € ATH(x), PBH(z,x")).

Calculating the local region is a matter of deciding which
of the constraints provided by intersecting the halfspaces
PBH (z,z') are binding. That is, we could write

LR(a:):{ N PBH(a:,a:’)} N ATH (x)

z'€ES(x)

where ES(z) C X, and is the smallest such set. ES(z)
is referred to as the edge-set of z, for reasons that will be
clear shortly. In order to find the edge-set, a convex hull
technigue may be used.

In particular, note that

ATH(z)={2€ Z:2=Q\+z, )€ RK}

where Q. A is a short form for Zfil Qi and Q, ; are
the vectors found in step 2, and

PBH(z,2")={2 € Z : {ap,x — B) > 0}



where a,y =z — 2’ and B,y = 3(z + z'). Note that

LR(z)= () (PBH(z,2') N ATH(z))
z'eX

and

PBH(z,2')NATH(z) ={2 € Z : 7} yA > 050, A € R}

where v, .+ is a K x 1 column vector whose ith entry is
(Qz.iy ), AN dy 50 = (g, Br — ) IS a scalar. Thus,
the problem is reduced to looking for the binding set of in-
equalities out of the entire set

Vo wA>0p0 o' €X—{z}

It may be shown that this problem is equivalent to finding
the convex hull in R¥ of the points

€xar = % e X —{z}

The constraints which bind are exactly the same as the
points which lie on the exterior of the convex hull. In
terms of complexity considerations, finding the convex hull
J points in RX is O(JI%/21). Finding the set of binding
constraints gives us ES(z).

Step 4: From the Edge-Set to the Simplicial Complex

The goal is to take the edge-sets ES(z) Vz € X — BD
and to find a simplicial complex. A K -dimensional simplex
consists of edges between all pairs of the K + 1 points.
Thus, an algorithm to convert edge-sets into simplices may
proceed as follows. For each x, and for each combination of
K points culled from ES(z) labelled z1, . . ., zk, verify for
eachi=1,...,K whether {z} U{z1,...,2x} — {z:} C
ES(z;). If so, then the simplex corresponding to the points
Z,T1, ..., oK belongsto SC(X). (Otherwise, it does not.)

4 Discussion of the Algorithm

The algorithm which was specified in the previous sec-
tion is fairly involved. We will try to explain aspects of it on
two independent fronts: why it works, and its complexity.

4.1 Motivation of the Algorithm

The following result is proven in [1]. Let V(X)) be the
\Voronoi Diagram of the set of sample points X of manifold
F, where the manifold is of dimension 2, and is embed-
ded in R?; note that by V(X) we mean the entire diagram,
rather than just the vertices. Let T = V(X)) N F; intersect-
ing the Voronoi Diagram, which is a partition of R?, with
the manifold F' has the effect of partitioning the manifold.

Now, let Dual(Y) be the dual of Y; that is, if two samples
z1 and z, are contained in cells of YT which border each
other, let Dual(Y') contain an edge between z; and z. It
can be shown that if X is a dense enough sampling of F' (in
a formal sense not to be described here), then Dual(Y) will
be a simplicial complex which is homeomorphic to F' and
sufficiently close to it.

Of course, this theorem cannot be used for construct-
ing SC'(X), since the construction of Dual(Y') relies on
knowledge of F', which we do not possess. All we know,
of course, is the sampling X C F. However, if a local
knowledge of F' was available, this might prove sufficient
to construct SC(X). Now, F is locally approximated at a
point = by the tangent hyperplane to F' at z; so if F' can
be thought of as a collection of tangent hyperplanes, then
perhaps some progress can be made.

In fact, this is exactly what is done. In step 2, the ap-
proximating tangent hyperplane is calculated at each point.
In step 3, this information about the local behaviour of the
manifold is used to find the edge-set in a manner which is
exactly parallel to intersecting the Voronoi Diagram of the
points with this local approximation of the manifold. How-
ever, the advantage of doing things in the way described in
the previous section is in terms of the complexity, as dis-
cussed in the next section.

4.2 Complexity

To analyze the complexity of the overall algorithm, it
will be simplest to break it down step by step.

Step 1: For a given z, this step is O(rK.J) since the
neighbourhood is of size rK. (In fact, the step could be
O(Jlog J): all of the points could be sorted in terms of
their distance with respect to a fixed point; however, we will
assume that r K < log.J.) Thus, for all J points, this step
isO(rK J?).

Step 2: In the worst case scenario, all combinations of K +
1 points out of the neighbourhood, which is of size » K must
be searched. As a result, for a single point the complexity

is (%)) < (rK)X+1; for all points, it is O(J (1K) +1).

Step 3: As was mentioned in section 3, the calculation of
the local region amounts to a convex hull calculation of J
points in K dimensions; this has complexity O(.J%/21).

Step 4: In principle, an edge-set E.S(z) may have as many
as J (or really J — 1) elements; in practice, of course, this is
highly unlikely. However, assuming that this is the case,
then the complexity of dealing with a single edge-set is
(i) < JX; so the complexity of constructing the simpli-

K
cial complex from all of .J edge-sets is O(JET1).

If J is large, the complexity of step 4 dominates, so that the
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Figure 2. Examples of manifold reconstruction. The samples are shown above and the reconstructed

manifold below.

complexity of the entire algorithm is O(J%+1). However,
as has been noted, in a typical problem, ES(z) should be
O(1) forall z € X; as a result, the complexity from step 3
dominates, and the complexity is O(J%/21). In fact, how-
ever, we may lower the complexity further if we are willing
to sacrifice a little bit of certainty.

5 Resultsand Conclusions

In order to demonstrate the efficacy of the reconstruction
algorithm, three examples are shown in figure 2. Owing
to the nature of what can be visualized, only three types
of examples are here reproduced: one-manifolds (curves or
disconnected curves) embedded in R?, one-manifolds em-
bedded in R?, and two-manifolds (surfaces or disconnected
surfaces) embedded in R3. (Of course, in cases of interest
we are often looking for, say, three-manifolds embedded in
R1%; however, there is no good way of visualizing this.) In
all cases, r = 10 is used.

In each case, the samples are shown above and the recon-
structed manifold is shown below. Despite the varying ge-
ometries and topologies, the algorithm is correct in all of its
reconstructions. It should be noted, however, that the algo-
rithm does not work in all cases. In particular, the algorithm
seems to fail in cases where the samples are close to non-
generic, that is, nearly regular samplings. For example, the
algorithm consistently fails to reconstruct a small piece of a
plane embedded in R? which is sampled in a gridlike fash-
ion. Future research will focus on ensuring that the algo-

rithm works in such cases (assuming the sampling is dense
enough), as well as on proving results which establish the
validity of the algorithm.
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