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Abstract

A new algorithm for the segmentation of objects from 3D
images using deformable models is presented. This algo-
rithm relies on learned shape and appearance models for
the objects of interest. The main innovation over similar ap-
proaches is that there is no need to compute a pixelwise
correspondence between the model and the image; instead,
probability distributions are compared. This allows for a
faster, more principled algorithm. Furthermore, the algo-
rithm is not sensitive to the form of the shape model, mak-
ing it quite flexible. Results of the algorithm are shown for
the segmentation of the prostate and bladder from medical
images.

Keywords: deformable segmentation, prostate segmenta-
tion, shape and appearance model, medical image segmen-
tation.

1. Introduction

The segmentation of objects from 3D images using de-
formable models is both an important and interesting prob-
lem in computer vision. It is important because of its natu-
ral application in the medical arena; for example, segmenta-
tion of tumors from CT or MRI images can be critical in the
treatment of cancer. On the other hand, it is interesting be-
cause of the algorithmic challenges inherent in extracting
deformable objects from real-world 3D images. In the con-
text of medical imagery, the key segmentation-related chal-
lenges are the following:

• Challenge #1: The objects of interest are often diffuse
and lack strong edges.

• Challenge #2: There are often many objects, both of
interest and not of interest, within a small volume.

• Challenge #3: Many objects have fairly similar inten-
sity profiles. Typically, this effect cannot be removed

by simple pre-processing such as histogram equaliza-
tion.

• Challenge #4: Many of the objects are of roughly the
same shape. For example, the prostate and bladder are
both “somewhat deformed” spheres.

The algorithm presented in this paper uses learned mod-
els for both the shape and appearance of objects to achieve
segmentation; learning both types of information is the only
reasonable way to deal with all 4 challenges. Our algorithm
is certainly not the first algorithm to combine shape and ap-
pearance. However, existing algorithms that use both shape
and appearance models (such as [5]) require a pixelwise cor-
respondence between the model and the image; this corre-
spondence is often very difficult to compute, and can be ex-
tremely time-consuming. Instead, our algorithm character-
izes a model object by (a) its shape and (b) a probability dis-
tribution of the intensities (or colours, textures) of the pixels
within its interior. As a result, comparing a particular model
object to the image is as simple as comparing two probabil-
ity distributions. The algorithm allows the shape to evolve
until the optimal match is found. Furthemore, unlike several
existing algorithms, our algorithm does not require a partic-
ular form for the shape model; any parametric shape model
can be used. We used a simple PCA-based model in our ex-
periments, as this is sufficient to achieve good results; how-
ever, a more sophisticated shape model can be used if the
application demands it.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the existing literature on segmentation of 3D
objects using deformable models. Section 3 is the heart of
the paper; it derives the equations that comprise the segmen-
tation algorithm. Section 4 demonstrates the algorithm’s ef-
fectiveness in a medical application: segmentation of the
bladder and prostate from medical imagery. Finally, Sec-
tion 5 concludes.
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2. Prior Work

Existing algorithms for the segmentation of 3D objects
using deformable models can be categorized based on the
type of learned information they use.

No learned information. The main exemplar of this
type of approach is the traditional active contour or “snake”
[11]. More recent work (e.g. [1, 2, 13, 15]) has focused on
geometric curve evolution, combined with level sets [16], to
allow for both topological changes to the object and greater
numerical stability. Standard active contour methods that
seek edges tend to have difficulty when the objects to be
segmented are blurry or not sharply delineated from the
background (such as the prostate in Section 4 below). Ex-
tensions such as [4] try to segment on the basis of appear-
ance by evolving the surface based on simple criteria re-
lated to the intensities (or colours) of the pixels in its inte-
rior; these methods achieve greater accuracy and robustness
at the cost of a major reduction in speed. In general, algo-
rithms that do not use learned information are constrained
in terms of what they can segment; they will have difficul-
ties with each of the four challenges posed above.

Learned shape models. Some researchers have aug-
mented a level-set active contour segmentation algorithm
with a PCA term that biases the curve evolution towards
shapes that are judged to be more likely based on the train-
ing set [14, 19]. Cremers et al. incorporated a more so-
phisticated (non-PCA) shape model [6]. Segmentation of
3-D medical images has also been accomplished by the
coarse-to-fine deformation of a shape-based medial repre-
sentation model, or “m-rep” [18, 21]. Algorithms that pos-
sess only a learned shape model will typically fall prey to
challenges 3 and 4. Learned shape methods have also been
extended to allow for simple (non-learned) models of ap-
pearance [22, 23]; for example, the intensities within the
segmented areas may be forced to have means or variances
significantly different than the background.

Learned appearance models. One version of this type
of segmentation involves the non-parametric warping of a
target surface to a deformable atlas [10]. Contours from the
atlas can then be transferred onto the target volume. This
type of method will have trouble with challenges 2, 3, and 4,
and can also be slow in high dimensions. Some active con-
tour models [17] assume that one has a probabilistic char-
acterization of appearance that is learned beforehand. Fi-
nally, approaches related to the current paper, but for which
shape models are either absent or a minor component, have
been used by the authors in previous work [7, 26]. Other re-
searchers [9] have used a similar approach.

Learned shape and appearance models. There are a
variety of methods that model the shape and appearance of
an object using principal component analysis (PCA). The
standard-bearer for such methods is the “active shape and

appearance model” of Cootes et al. [5], which has been suc-
cessfully applied to the three-dimensional segmentation of
medical volumes, including magnetic resonance images of
the brain, heart, and articular cartilage [8, 12, 25].

The main drawback of active shape and appearance
model has already been mentioned in Section 1; they re-
quire the computation of a pixelwise correspondence be-
tween the model and the image. We will say more about
this in Section 3.2.

3. The Segmentation Algorithm

In this section, we describe the heart of the algorithm: the
procedure for fitting a combined shape-appearance model
to an image. This optimal fitting of the model results in
the segmentation of the image. The basic idea is as fol-
lows. The shape is given by a description of the surface, or
multiple surfaces in the case of multi-object segmentation.
The appearance is described by a probability distribution of
some photometric variable inside the object of interest, or
multiple distributions in the case of multi-object segmen-
tation. A shape-appearance pair is then given by (surface,
distribution), and this pair is considered sufficient to char-
acterize an object for the sake of segmentation. The learned
model is a low-dimensional manifold in the space of such
pairs. To verify how well any particular shape-appearance
pair matches the image, we compute the empirical distribu-
tion of the photometric variable inside the shape within the
image; this distribution is then compared to the appearance
model. We therefore evolve the shape of an object (or multi-
ple objects) until the empirical distribution(s) best matches
the model distribution(s). In the remainder of this section,
we flesh out these ideas.

3.1. Terminology

In this section, we describe some of the notation needed
to define the problem rigorously. In the case of single-object
segmentation, a model-instance is described by a (surface,
distribution) pair. The distribution is taken over some pho-
tometric variable; in the experiments we perform, this vari-
able is grayscale intensity, however, it may also be colour or
texture. Given that the image is discrete-valued, we will as-
sume a probability mass function over the intensity. How-
ever, all of the analysis below can easily be transferred to the
case of probability density functions (which might be more
relevant in the case of textures). In the case of multi-object
segmentation, a model-instance will be specified by J (sur-
face, distribution) pairs, one for each object.

We assume each surface is a topological sphere, and
may therefore be written S : S2 → R

3. For conve-
nience, we will denote a point on the surface using a
parametrization of S2 as S(u); however, the particular
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parametrization chosen is unimportant. Let us denote the
image by I : R

3 → {1, . . . , n}; the image is piecewise
constant, where the “pieces” correspond to voxels (which
have positive volume). We denote the probability distribu-
tion by q = (q1, . . . , qn), where qi = prob(I(x) = i); of
course qi ≥ 0 and

∑
i qi = 1. Thus, a model-instance is

given by (S(·),q). The shape-appearance model is a low-
dimensional manifold in the space of such model-instances;
a d-dimensional model is parametrized by β ∈ R

d, and we
will write (S(·; β),q(β)) (sometimes condensing (S(·; β)
to S(β)). A particular form for the shape and appearance
model (S(β),q(β)) is discussed in Section 4; in the subse-
quent derivation, the particular form is unimportant.

The goal is to find the particular model-instance, i.e. the
particular β, for which the model best matches the image.
In the following section, we describe a natural criterion for
scoring such matches.

3.2. Segmentation Criterion

Given a surface S, let pS be the distribution (probabil-
ity mass function) of intensities lying inside the surface S.
This can be formally defined as follows. Let V be the vol-
ume inside of S; that is, let S = ∂V . In this case,

pS
i =

∫
x∈V

δ(I(x), i)dx∫
x∈V

dx
(1)

where δ(i, j) = 1 if i = j and 0 otherwise. We will refer to
pS as the empirical distribution corresponding the surface
S.

The goal of segmentation is to find a region in the image
that is most like the model. That is, we would like to find a
model shape S(β) whose empirical distribution pS(β) most
closely matches its model distribution q(β). In other words,
the segmentation can be posed as

min
β

K(pS(β),q(β))

where K is some suitable measure of dissimilarity be-
tween probability distributions. There are several obvious
candidates for K from information theory. We choose the
Kullback-Leibler divergence,

K(p,q) =
n∑

i=1

pi log
pi

qi
(2)

Note a key feature of this segmentation algorithm: un-
like other joint shape-appearance model-based algorithms,
there is no need to find a correspondence between the pix-
els of the model and those of the image. For example, in [5]
finding the correspondence would involve repeated 3D im-
age warpings, the most time-consuming and least rigorous
part of that algorithm. In our case, by contrast, pixels are

not compared directly; instead, distributions are compared.
While some information is obviously lost in performing dis-
tribution comparisons instead of pixel-wise comparisons,
we show that in relevant experiments (in medical images)
this loss of information does not adversely affect perfor-
mance. Of course, distribution comparison measures may
be computed considerably faster than pixelwise correspon-
dences.

When we wish to segment multiple objects at
once, our model is given by J object descriptors
{(Sj(·; β),qj(β))}J

j=1, and the goal is then to solve

min
β

J∑
j=1

K(pSj(β),qj(β))

Note that there is a single parameter vector β that controls
all of the objects; this captures the notion that the objects’
shapes and appearances may be interrelated. Although a
more general version of this criterion might be a weighted
sum of Kullback-Leibler divergences, we have found the
unweighted criterion works well in practice.

3.3. Optimization of the Criterion

We wish to minimize

K(β) ≡ K(pS(β),q(β))

in the case of single object segmentation. (We will only deal
with the single object case in this section; the multi-object
case follows straightforwardly.) We will solve for a local
minimum of the criterion via gradient descent, i.e.

dβ

dt
= −∂K

∂β
(3)

From (2), we have that

∂K

∂β
=

n∑
i=1

[(
1 + log

pi

qi

)
∂pi

∂β
− pi

qi

∂qi

∂β

]

where we have shortened p
S(β)
i to pi and qi(β) to qi. From

(1),

p
S(β)
i =

∫
x∈V (β)

δ(I(x), i)dx∫
x∈V (β)

dx
≡ N

S(β)
i

V (β)

so that
∂pi

∂β
=

1
V

(
∂Ni

∂β
− pi

∂V

∂β

)

In order to compute ∂Ni/∂β and ∂V/∂β, we need to
be able to determine derivatives of the form ∂ψ/∂β, where
ψ =

∫
x∈V (β)

ν(x)dx. The variational derivative of ψ with
respect to the surface S (where S = ∂V ) is given by
δψ
δS = ν(u)n(u), where n(u) is the normal to the surface
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at the point S(u) (see, for example, [3]). It can be shown by
a sort of generalized chain rule that

∂ψ

∂β
=

∫
u∈S2

ν(u)
∂S

∂β
(u; β)n(u;β)du

where ∂S/∂β is a d × 3 matrix (d = dim(β)). To simplify
future computations, we introduce the notation

Γ(u; β) =
1

V (β)
∂S

∂β
(u; β)n(u; β)

so that
∂ψ

∂β
=

∫
u∈S2

V (β)Γ(u; β)ν(u)du

We have, therefore, that

1
V

∂Ni

∂β
=

∫
u∈S2

Γ(u; β)δ(I(S(u; β)), i)du

1
V

∂V

∂β
=

∫
u∈S2

Γ(u; β)du

Some simplification gives

∂K

∂β
=

∫
S2

Γ(u; β)

[
n∑

i=1

δ(I(S(u; β)), i)
(

1 + log
pi

qi

)]
du

−
(∫

S2
Γ(u; β)du

) [
n∑

i=1

pi + pi log
pi

qi

]
−

n∑
i=1

pi

qi

∂qi

∂β

=
∫
S2

Γ(u; β)du +
∫
S2

Γ(u; β) log
pI(S(u;β))

qI(S(u;β))
du

−
∫
S2

Γ(u; β)du − K(β)
∫
S2

Γ(u; β)du −
n∑

i=1

pi

qi

∂qi

∂β

which finally yields

∂K

∂β
=

∫
S2

Γ(u; β)
(

log
pI(S(u;β))

qI(S(u;β))
− K(β)

)
du−

n∑
i=1

pi

qi

∂qi

∂β

(4)
We will use (4) to find a minimum of the Kullback-

Leibler divergence with respect to the model parameters,
via gradient descent. In general, we cannot compute the in-
tegral in (4) analytically; we must resort to a finite element
method. This is relatively straightforward, given that the
surface representation we use is that of a mesh (simplicial
complex). For any triangle of the mesh, the normal is fixed;
furthermore, the triangles are chosen to be small enough so
that neither ∂S/∂β nor I varies much over the triangle. As
a result, we can approximate the integral in equation (4) by

∑
t∈T

Γ(ut; β)
(

log
pI(S(ut;β))

qI(S(ut;β))
− K(β)

)
at

where T is the set of triangles in the mesh, ut is a represen-
tative point on the triangle t (typically the centroid), and at

is the area of the triangle t.

4. Application: Prostate Radiotherapy

In this section, we present the results of our segmenta-
tion algorithm applied to an important real-world problem
in medical imaging: automatic contouring of organs from
volumetric computed tomography (CT) imagery.

A key advance in cancer treatment with radiation
has been the introduction of a new technology known
as intensity modulated radiotherapy (IMRT). This is a
computer-controlled method of delivering radiation us-
ing several beams from different angles that can pre-
cisely irradiate a 3D target of interest (e.g. a tumor) while
simultaneously avoiding nearby radiation-sensitive or-
gans.

The bottleneck in 3D IMRT systems is the significant
amount of time and human intervention required to delin-
eate the tumor and nearby structures on each scan. A ra-
diation oncologist can often take 30-45 minutes to outline
all of the structures of interest in every axial CT slice. Per-
forming this operation each of the 30-40 times a patient is
treated is tedious. Using an uncompiled MATLAB imple-
mentation on a modest machine (1.67 GHz AMD machine
with 448 MB RAM), our algorithm performs the same pro-
cedure in five minutes.

Here, our focus is on prostate cancer, the second leading
cause of cancer death for American men. The state of the art
in computer vision algorithms applied to prostate segmenta-
tion is considerably less advanced than for other sites. In the
best hospitals across the country, the status quo is still man-
ual contouring. Several vision approaches have been pre-
sented for prostate segmentation from ultrasound; one of the
most effective is an active-contour-based method proposed
by Shen, Zhan and Davatzikos [20]. The work most com-
parable to the algorithm described here was recently pro-
posed by Tsai et al. [22, 23] and applied to 3D MRI images
of the prostate. These algorithms do not use learned appear-
ance models; the disadvantage of using only learned shape
models has already been discussed in Section 2.

4.1. Learning the Shape Model

In order to implement (4), we must have a shape-
appearance model, (S(β),q(β)), ideally learned from
training data. Our training set consisted of 17 sets of
512x512x90 CT images of the male pelvis from differ-
ent patients, in each of which a radiation physicist had
outlined the prostate and bladder. Our testing set con-
sisted of 3 different image sets not in the training database.
There is a substantial amount of shape variability in this
inter-patient training data set. To capture this variability,
we used a linear shape model obtained from principal com-
ponent analysis, a common technique in the model-based
segmentation literature; see for example [5]. The gen-
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eral scheme is as follows: the surface of each object is
represented as a mesh, and specified by a vector whose ele-
ments are the x-, y-, and z-coordinates of each of the ver-
tices. The vectors representing the organs are then stacked
into a combined vector. There is one such combined vec-
tor for each training image, and PCA is performed on these
combined vectors.

In our case, points from homologous structures were
automatically extracted and put into correspondence using
a variational-implicit-surface-based algorithm [24] that re-
samples every set of contours to have the same number of
slices and the same number of points equally spaced around
each contour. We resampled each object to have 20 slices
with 20 points on each contour, and constructed a 10-mode
PCA model using the 800 points from each set in the train-
ing database. We emphasize that if necessary, this simple
model could be replaced with a more sophisticated shape
model like those discussed in Section 2, but the segmenta-
tion equations would remain the same.

4.2. Learning the Appearance Model

To form an appearance model q(β) from the training
data, we could perform PCA on training histograms. In fact,
the vectors representing the histograms could be appended
to those representing the shapes, which would yield the de-
sired joint model. However, there are two major problems
with this approach. First, PCA on histograms does not pre-
serve the property that histograms are positive and sum to
1. Second, a linear combination of training histograms of-
ten produces new histograms very unlike any training ex-
ample.

Instead, we employ a different approach, based on the
idea that there will be some overlap (perhaps small) be-
tween the initial guess of the object’s position and its true
position. Our goal should be to extract that section of the ini-
tial object volume which overlaps with the true object, and
to form our model density solely based on this. Of course, it
is not obvious how to extract this overlapping volume. The
following heuristic is extremely successful in practice.

For a given test image, the volume corresponding to the
initial object position is divided into blocks; denote the set
of blocks B = {bj}. For each block, we compute the his-
togram, h(bj); we then determine how similar a particular
block is to the model by measuring its closeness to each of
the training histograms, {qtrain

i } (there is one such train-
ing histogram for each training image we receive). In par-
ticular, we compute

Kj = min
i

K(h(bj),qtrain
i )

If such a value is low, then we know that the Kullback-
Leibler distance between the block’s histograms and at least
one of the training histograms is small; as a result, the block

is likely to belong to the true object. We can then rank order
the blocks by their Kj values, and choose only the fraction
α of the blocks with the lowest Kj values. These “good”
blocks are then deemed to be part of the true object, and the
model density q can be computed as the histogram of the
union of these blocks.

Note hat α must be chosen to be less than the fraction of
the initial volume that overlaps the true volume; while this
fraction is not known a priori, α = 0.25 produced good re-
sults in practice. In fact, the model density as computed us-
ing this algorithm is often almost indistinguishable from the
density corresponding to the true position of the object.

4.3. Results

We initialized the model using β = 0 in (3), that is, at the
position of the mean shape, and allowed it to converge. Note
that this is in contrast to other algorithms where rough man-
ual placement is required to guarantee convergence to the
correct result. The algorithm ran successfully on three test
images; however, for space reasons, the result for only one
of the test patients is pictured in Figure 1. The model and
segmentation algorithms are fully three-dimensional, but
the results in Figure 1 are represented as 2-D slices to ease
visualization. One can appreciate the difficulty of the seg-
mentation problem in this context: the CT images have rel-
atively low contrast in the area of interest, and the prostate,
and bladder have gray-scale intensities that are very simi-
lar to each other as well as to structures in many other re-
gions.

15 iterations of a discrete version of equation (3) were
required; the corresponding running time was just over 4
minutes on a 1.67 GHz AMD machine with 448 MB RAM.
Therefore, we conclude that our segmentation algorithm has
substantial promise for the problem of rapid, automatic con-
touring.

5. Conclusions and Future Work

We have demonstrated a segmentation algorithm that
matches a learned model of shape and appearance to an im-
age by comparing empirical and model probability distri-
butions. The algorithm produces good results for difficult
3D medical images. Future work will focus on coarse-to-
fine methods of sampling the model space, to ensure that
the algorithm is not trapped in an incorrect optimum. We
also plan to investigate more sophisticated shape models
that better fit our data.

We will shortly obtain a corpus of training data that in-
cludes CT volumes and contours that vary along both inter-
patient and intra-patient axes. That is, for each of many pa-
tients we will have many examples of that patient’s bod-
ily state. Using this data, we plan to learn a model of inter-
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Figure 1. Segmentation results for slices 28, 34, 42, and 48 of patient 2662. The top row shows the ini-
tial boundaries for the segmentation (corresponding to the mean shape). The bottom row shows the
segmentation result at convergence (red) versus the hand-drawn ground-truth contours supplied by
a radiation physicist (blue). The top contour is the bladder and the bottom contour is the prostate.
Note that both organs are not visible in every slice.

and intra-patient variation that is more suitable for image-
guided therapy applications than the inter-patient model de-
scribed here. We expect intra-patient data to have much less
inherent variability than inter-patient data, and hence for our
segmentation algorithms to perform more accurately.
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