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Abstract 
A novel approach to grouping symmetrical planar 

curves under a projective transform is described. Sym- 
metric curves are important as a generic model for ob- 
ject recognition where an object class is defined by the 
set of symmetries that any object in the class obeys. In 
this paper, a new algorithm is presented for grouping 
curves based on their correspondence under a plane 
projectivity. The correspondence between curves is es- 
tablished from an initial correspondence between two 
pairs of distinguished lines, such as lines tangent to 
inflection points. This initial correspondence leads to 
a reduced dimensional form for the projective map- 
ping between the curves and a natural method for es- 
tablishing correspondence between all points on the 
curves. A saliency measure is introduced which per- 
mits grouping results to  be ordered in terms of the de- 
gree of symmetry supported by each curve pair. This 
saliency measure provides a basis for recognition in 
the case of approximate symmetry. 

1 Introduction 

1.1 The Process of Recognition 

In order to  recognize an object in a cluttered scene 
with highly textured and complex backgrounds, and 
with partial occlusion of the object by other objects 
in the scene, it is necessary to carry out two func- 
tions: figure-ground separation and classification. Of- 
ten these two functions are inter-twined as in model- 
based vision where the ]projection of a specific 3-d ob- 
ject is used to group image features corresponding to 
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the model. 
Such specific grouping mechanisms can be effec- 

tive but do not readily lead to  a recognition process 
that can handle general classes of objects. Techniques 
which rely on specific, three dimensional, geometric 
models of the objects to  be recognized are difficult to  - 
adapt to the rapid pace of change in the real world 
and cannot easily support the in-class variability of 
real object structure. 

Generic models are vital to  the future of object 
recognition. It has long been recognized that sym- 
metry is a well-defined, intuitively accessible generic 
model[2]. Symmetry is pervasive in imagery because a 
symmetrical object is both statically and dynamically 
more stable. For this reason, even natural objects such 
as flowers and trees exhibit a high degree of symmetry. 

1.2 What is Symmetry? 

Symmetry can be considered in the most general 
way as a relationship between two- or more geometric 
structures according to  the following definition. 

Transformational symmetry is defined by a trans- 
formation group, G and a set of geometric struc- 
tures, S, where for each pair of structures, si, sj E 
S, 3 g E G, such that s j  = g(si)  and si = g-'(sj). 

In this paper, we restrict the class of symmetries to  
plane projective transformations. While not all sym- 
metries of interest can be described in this restricted 
framework, it is still quite general and will establish 
the required grouping and recognition infrastructure. 

1.3 Related Work 

The work here is most closely related to  a number 
of efforts directed at the use of generic model-based 
grouping constraints to  extract object descriptions 
from scenes. There has been extensive study of group- 
ing outlines of rotationally symmetric objects[l3] and 
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of generalized cylinders[l2]. In these investigations, 
the constraints imposed by the 3-d surface geometry 
of the class induces a planar symmetry constraint in 
the image. In practice, the grouping was carried out 
using an affine approximation to the projective sym- 
metry constraints. 

The general symmetry constraint defined by an 
affine symmetry transformation was exploited by 
Cham and Cipolla[5]. They did not relate the con- 
straint to a specific object class but demonstrated 
that affine symmetries can be grouped successfully in 
complex scenes. They also introduced the notion of 
saliency which measures the significance of a match 
between a pair of curves. The formulation of a saliency 
metric is necessary in order to avoid trivial symme- 
tries. 

Leung and Malik have investigated the detec- 
tion of structures repeated under planar affine 
transformations[9]. They demonstrate the matching 
of texture descriptions to recover symmetric features. 

Fleck et al. have used generic axial symmetry de- 
scriptions and the geometric relations between sym- 
metry axes to distinguish the parts of the human 
body[7]. The axes are recovered under the assump- 
tion that smoothed local symmetry holds. This work 
emphasizes the strong link between object class and 
the grouping constraints induced by the class. 

2 Plane Projective Symmetries 

In this paper, plane projective, rather than affine, 
symmetry is implemented with projectively invariant 
descriptions. More precisely, the general definition of 
symmetry given in Section 1.2 is restricted as follows. 

Plane projective symmetry is defined by the set 
of plane projective transformation matrices and 
a set of planar geometric structures, S, where for 
each pair of structures, s,,sg E S ,  3 T E G, such 
that s3 = ~ ( s , ,  T) and s, = 7r(s3, T-l).  Here 7r is a 
plane projective transformation of the structure. 

Beyond actual planar symmetries such as wallpaper 
and fabric patterns viewed under perspective, a wide 
variety of three dimensional objects also include the 
plane projective symmetry constraint in images, for 
example, objects of continuous rotational symmetry. 

In this paper, the development is focused on planar 
curve features. A large class of objects is captured by 
the observation that the planar transformation con- 
straint between curve segments does not require that 

both curves are co-planar. Figure 1 shows the rela- 
tion between two curves in 3-d, C and C’. The image 
projections of C and C’ are related by a projectivity. 

Figure 1: Here planar curves C and C’ are related 
by a plane projection T3d, and both are viewed as im- 
ages C and C’ under perspective projection, T3d-2d. 

The transform from C to C’ in the image is also a 
projectivity, T2d. 

Many man-made and natural structures have pla- 
nar curve sections, such as the petals of a flower or the 
surface intersections of manufactured objects. How- 
ever, while these features are not necessarily co-planar 
they do usually have some symmetry relation, such as 
translation, rotation or scale. The projection of these 
3-d symmetry transforms into the image still produces 
a plane projective transformation and therefore serves 
as a source of grouping coristraint. 

2.1 Classification of Projective Symme- 
tries 

Plane projective symmetries can be classified in 
terms of the eigenvalues of the projection matrix T. 
The eigenvectors of the matrix define points and lines 
in the image which are fixed under the transformation 
according to variobs conditions that might hold among 
the eigenvalues. Such a classification has been made 
by Springer[lO]. VanGool has constructed a useful in- 
terpretation of these symmetry classes in terms of the 
geometry of the fixed structures[ll]. The rank of the 
transformation matrix must be three, since each sym- 
metry transformation must have an inverse. Several 
allowable general constraints among the eigenvalues, 
XI, X2,  X3, and their interpretations are given in Ta- 
ble l. As an example of interpreting the fixed struc- 
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Constraint Symmetry Class I Fixed Structures 
I three fixed 

A3 real; I points 
I one fixed point 

real; X2, A3 com- 
plex conjugates; 

A2 = A,; planar homology 

harmonic 
homology 

a line of two 

points 

lines and a fixed 
line 
same as above 
with 
T2 = I 

Table 1: A classification of plane projective transfor- 
mations. 

tures, the transformation matrix for the harmonic ho- 
mology can be represented by, 

P lT 
IT P 

T = 1 - 2 -  

Here p is the center of the fixed pencil, and 1 is the 
line of fixed points. A similar construction has been 
devised by Vihvillel . A harmonic homology has period 
two, i.e., T~ = I .  

2.2 Affine Symmetries 

Much of the prior work has concentrated on group- 
ing under affine symmetry, defined as follows. 

Plane affine symmetry is defined by the set of 
plane affine transformation matrices G of the 
form, 1 :ll tl2 t13 1 

T = 021 t22 t23 

and a set of planar geometric structures, S ,  where 
for each pair of structures, s;,sj E S ,  3 T E G 
such that sj = w(si ,T)  and s; = a(s j ,T- ' ) .  Here 
Q is a plane affine transformation of the structure. 

This more restricted symmetry is widely exploited for 
grouping, since it is a good approximation to perspec- 
tive image projection when objects are viewed from a 
distance large compared to their depth. For the case of 
rotationally symmetric objects it is necessary to have a 

A. Zisserman, private communication 

very wide angle lens before perspective effects become 
significant, even for very close-up views. 

3 Curve Grouping under Projective 
Symmetry 

3.1 The Grouping Process 

The symmetry grouping process involves three dis- 
tinct procedural steps: 

Decide which pair of curves, C and C' are to  be 
matched. 

Determine the correspondence between any point 
on C and its symmetrical image on C', and vice 
versa. 

Evaluate the match to  determine the degree of 
symmetry. 

Steps 1 and 3 are somewhat inter-related and discus- 
sion of them is deferred until Section 4. In this section 
the problem of determining a point by point mapping 
of one curve onto another is considered. 

3.2 Point Correspondence 

If the symmetry transformation between the curves 
is Euclidean, then the point correspondence can be 
established, up to an unknown translation along the 
curve, simply by parameterizing each curve by arc 
length. In the case of projective transformations, more 
parameters are needed to  establish point correspon- 
dence. 

In order to reduce the combinatorial complexity of 
determining these parameters, the invariance of spe- 
cial curve features is exploited. For example in group- 
ing rotational symmetric object outlines, the bitan- 
gent feature is used to robustly extract distinguish- 
able points on the contour[l3]. Here, tangent lines 
at inflection points are used to  initiate the point cor- 
respondence mapping. An inflection point is locally 
collinear and thus tangency a t  inflection points is pre- 
served under projectivities. 

\ 

3.3 Tangent Lines At Two Inflection 
Points 

Consider two inflection points il and i 2  on C. Con- 
struct the tangent lines 11 and 12 at these points. As- 
suming these lines are distinct, they define a basis for 
a pencil of lines P passing through their intersection. 
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Any line 1 in P may be written as a linear combination 
of 11 and 12: 

1 = a11 + (812. 

Now consider any point p on the curve C ,  and con- 
struct the line in P passing through p.  This line must 
satisfy lTp = 0 and 1 = a l l  + pia. Together, these 
imply 

[ ;] = [ $1  
The parameters a and p may be viewed in two 

ways. First, as illustrated in Figure 2a, they may 
be viewed as the homogeneous coordinates of the line 
through p in the one-dimensional projective space 
formed by the pencil of lines. Second, they may be 
viewed as the coordinates of p following an affine 
transformation: 

Both of these views are necessary to establish corre- 
spondence between points on corresponding curves. 

/ c’ 

a b 

Figure 2: (a) A pencil of lines defined by the tangents 
at two inflection points, 11 and 12, to the curve C. The 
homogeneous coordinates of a line within this pencil, 
[a, ,BIT, are defined in the basis formed by the two tan- 
gent lines. Any point p on the curve C is assigned a 
coordinate [a, ,BIT based on the line in the pencil pass- 
ing through p. Referring to both (a) and (b), if the 
line defined by [a, @ I T  corresponds to the line defined 
by [a’, ,5’JT, then the intersection points of these lines 
with the curves must also correspond. 

p(s)  on C corresponds to point p‘(s) on C’ and, using 
homogeneous coordinates, 

P‘(S) = X,TP(S). (4) 

Here A, represents the scaling ambiguity of homoge- 
neous coordinates. The inflection point tangents on C 
will also be transformed projectively: 

1; = X1TPT11 

1; = X2T-T12 (5) 

where T-T is the transpose of the inverse of T. Here 1; 
is the line corresponding to 1,. Thus if the correspon- 
dence of the tangents at inflection points is assumed, 
we can set up a pencil space for each curve P(11,12) 
and P ( l i , l i ) .  Now p(s) and p’(s) have coordinates 
[ a ( s ) , p ( s ) ] *  and [a‘(s),p‘(s)lT given by equation 2: 

We can solve these equations to give the relation be- 
tween the curves in the pencil spaces. 

Therefore, a ‘ ( s ) / p ‘ ( s )  = ( X a / X l ) a (  s)/ /3( s). 
If the constant scale factor X 2 / X 1  were known, this 

would give an invertible mapping - a correspondence 
- between lines in the two pencil spaces. This is 
true because a ’ ( s ) / p ’ ( s )  and a ( s ) / P ( s )  each uniquely 
determine a line in P( l i , lk)  and P(11,lz) and & / X I  
determines the mapping between lines in the two pen- 
cils (Figure 2). This correspondence may then be used 
to establish correspondence between points on C and 
C’. For any pencil space line 1 intersecting C in an 
unique point, its corresponding line 1’ would necessar- 
ily intersect C’ in an unique point, thereby establish- 
ing correspondence between one point on each curve. 
Corresponding pencil space lines intersecting C and C’ 
in multiple points would have a limited matching am- 
biguity, but these could be resolved through ordering 
and continuity constraints. Therefore, knowing X 2 / X 1  

would essentially solve the correspondence problem on 
the original curve. This in turn would allow calcula- 
tion of the projective transform T. 

3.5 The Projectivity After the Affine 
3.4 Correspondence in Pencil Space Transformat ions 

Let C and C’ \e two curves related by a projectiv- 
ity T. For an arbitrary parameterization of C ,  point 

Solving for the ratio X Z / X 1  can not be done us- 
ing the pencil spaces alone. Determining this ratio 
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requires using the second view of the mapping from 
curve points p to  In this view, as defined 
by (3), q = [a,P,1IT is the affine transformation 
of p determined by the lines 11 and 12. Similarly, 
q' = [a',p', 1IT is the affine transformation of p' de- 
termined by the lines li  and l;. The effect of these 
transformations of the projectivity T allows the ratio 
X2/X1, the point correspondences, and T itself to  be 
found simultaneously and efficiently. 

The affine transformations, represented by matrices 
L and L', along with equation (4), yield the following. 

Algebraic manipulation of this using 

and ( 5 )  shows that 

0 0  

where equality here is defined up to an arbitrary scale 
factor. The third row of T a p  is [SI, sa, s3IT = tTL-' 
where t 3  is the third row of T. Tap has four degrees 
of freedom since it is determined up to a scale factor. 
Comparing (7) to (6) shows that the unknown scale 
factor in (6) is A, = l/'(sla + s2@ f s3) = tTp. 

T a p  has several important properties. First, the pa- 
rameters determining the ratio X2/X1,  and indirectly 
the correspondence between points on the curves, 
are made explicit. Second, correspondence can also 
be determined by finding the nearest point q' to 
T,pq. Third, the original projectivity T is immedi- 
ately available as L'-lTapL. Finally, when T is affine, 
[SI, s a ,  SQ] = [O,O,  13. In this case, the transformation 
of C'(s ) ,  described by points q'(s), is an anisotropic 
scaling of the transformation of curve C(s ) ,  described 
by the points q(s). This makes calculation of XI and 
XZ straightforward. 

3.6 Computing Correspondence and Tap  

The properties of Tap and of the pencil space re- 
lationship a'/@' = ( A 2 / X l ) a / @  lead to  a natural 
method of computing correspondence between curves 
and computing the parameters of T,D. This is done us- 
ing a process similar in. nature to iterative closest point 

algorithms [l, 61. The following description assumes 
discrete sets of transformed points qi = [ai,@i, 1IT 
and q[l = [ai,@;, 1IT. 

1. Compute an initial estimate of XI and A2 using 
the affine approximation. This is currently done 
using a Hausdorff metric and search [8] for the 
two scale parameters. Initialize s1 = s2 = 0 and 
s3 = 1. 

2. Determine the new point correspondences. This 
can be done in two ways. First, the current es- 
timate of the ratio X2/X1 can be used to  estab- 
lish correspondence between a pair of pencil lines, 
which in turn establishes correspondence between 
the curve points that the pencil lines intersect 
(Section 3.4). Second, for each i, the closest point 
qi to T,pqi, for the current estimate of T a p ,  de- 
termines a matched pair. The second method 
turns out to be more stable and is used in the 
current implementation. 

3. Re-estimate the parameters of T a p  based on the 
correspondences qi, q[l . Estimation uses a robust 
weighting scheme to reduce the effects of missing 
curve sections. 

4. Repeat the previous two steps until the parame- 
ters of T a p  converge. 

3.7 Discussion of the Correspondence 
Technique 

In order to  calculate the projective transform, T, 
between two planar curves, correspondence must be 
established between points on the curves. Unfortu- 
nately, a blind search over the eight degrees of free- 
dom of T is untenable. The method proposed here 
starts from hypothesizkd correspondence between two 
pairs of lines that are tangent at inflection points of 
the curves. This correspondence reduces the degrees of 
freedom in T to four and leads to  a natural, efficient it- 
erative search method that simultaneously establishes 
correspondence between the curves and calculates the 
remaining parameters of T. Intuitively, this can be 
thought of as a search for the single scale parame- 
ter X 2 / X 1  embedded in the re-estimation of T a p  (and 
therefore of T) based on this parameter. 

One item of potential concern is the stability of 
the tangent lines at inflection points. While the po- 
sition of an inflection point is unstable, the tangent 
line, in contrast, is stable. To show this, let the curve 
C ( s )  = [z(s),y(s)lT be parameterized by arc length 
and have an inflection point at s = 0, and let C(s) be 

1119 



described in a local coordinate frame with the origin 
at the inflection point and the x axis tangent to C at 
the origin (Figure 3). In this case, it is easy to show 
that up to the third order 

x(s) = s + x2s2 + x3s3 and y(s) = y3s3 

The tangent line at  the inflection is naturally stable 
because the curvature, ~ ( s ) ,  is 0 at s = 0. This 
inherent stability increases as the second and third 
order coefficients of z(s) and y(s) decrease in mag- 
nitude. On the other hand, the stability of the in- 
flection point location along the curve increases with 
Ik(0)l = 16~31. Together, these observations indicate 
that instability of the inflection point leads to greater 
stability in the tangent line (Figure 3). When lk(0)l 
is small, the curve is close to a line around the inflec- 
tion point and the position of the inflection point is 
uncertain. This is exactly the case when the tangent 
line is most stable! Thus, although inflection point lo- 
cations are unstable, tangent lines at inflection points 
are stable. The overall consequence is that estimating 

8 
8 

0 

, 
8 

8 
8 

8 

Figure 3: C1 has a lower value of y3 than C2 and is 
approximately linear for a large interval around the 
inflection point. This make the inflection point loca- 
tion unstable but increases the stability of the tangent 
line. 

T a p  and converting back to  T using L and L' calculated 
from the line parameters should make T itself stable. 
To enhance stability, the estimated T can be used to 
rematch the original points on the curves, and from 
these correspondences T can be re-estimated. 

4 Saliency of Symmetry Matches 

In order to  select appropriate curves for match- 
ing and to  decide which curve pairs display a signifi- 
cant measure of symmetry it is necessary to define a 
saliency metric. For example, Cham and Cipolla use 
the smallest eigenvalue of the Hessian of the symme- 
try match error as a measure of the saliency of the 

match[5]. Their idea is that the localization of the 
symmetry match is a measure of saliency. That is, 
a significant match occurs when the match alignment 
can not be perturbed without large cost in ciirve fit- 
ting error. 

Intuitively, a symmetry match will be salient if the 
curves are complex and if the transform between the 
curves is both accurate and unique. Consider a curve 
that is well approximated by a conic. This curve is 
simple, having no inflection points. Furthermore, a 
conic projectively maps onto any other conic[lO], and 
there are three degrees of freedom to this projectiv- 
ity. Therefore, symmetry matches between curves that 
are nearly conics should produce an extremely poor 
saliency measure. These observations lead to the fol- 
lowing definition of saliency. 

The symmetry saliency, S(C, C') ,  of two curves, 
C and C' is defined as 

where E(A,B) is the residual error of a least- 
squares fit of a curve A to another curve B. Q 
is the best fitting conic to a curve segment. T is 
the projective transform that produces the best 
fit between two curves. 

The numerator of (8) rates both the complexity of the 
matched curves and, indirectly, the uniqueness of the 
projective mapping. The denominator of (8) rates the 
accuracy of the mapping. Short curve segments are 
close to a conic and therefore eliminated from consid- 
eration. The remaining curve segments containing two 
or more inflection points are matched and the saliency 
measure of Equation 8 is computed for all pairs of 
corresponding inflection points. The curve-to-curve 
match and the projective transform T is computed ac- 
cording to the algorithm described in Section 3.6. The 
curve-to-conic match is carried out using Booltstein's 
algorithm[3]. The resulting matches are ranked ac- 
cording to the value of S(C,  C ' ) .  

One aspect of the current approach that is some- 
what ad hoc is the selection of the domain on each 
curve segment to consider as active for matching. In 
the current implementation, the curve spanning each 
pair of inflection points is extended, if possible, to in- 
clude a total arc length of twice the length between the 
inflection points. The ideal approach will be to define 
a measure of curve complexity so that segments need 
only be extended to achieve enough structure to be 
uniquely matched. This refinement will be explored 
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64.4 

Z3.6 24.9 

Figuic !I: selics of rriatchcs in d scene contain- 
ing an orchid. The outline of the orchid illustrate a 
good example of non-coplanar curve symmetry. The 
large top image shows the tangent lines at  points of 

The four smaller images show the top four saliency- 
ranked rpatching curve symmetries and the associated 

Figure 5: The top match for an image of a Scene con- 
taining a butterfly. The top image shows the tangent 

spondence The bottom image shows the top 
match which produced an Order of magnitude higher 

'inflection used to form the correspondence mapping. lines at points of inflection used to form the corre- 

saliency value. The values are normalized so that 
the top ranked match has S(C,C') = 100. The line 
between curve segments indicates the matched curve 
pair, but is not a point correspondence. 

than any Other match* 
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in the next version of the matcher. 

5 Results 

[3] F. Bookstein. Fitting conic sections to scattered 
data. Computer Vision, Graphics, and Image 
Processing, 9:56-71, 1979. 

[4] B. Buxton and R. Cipolla, editors. Proceedings 
of the 4th European Conference on Computer Vi- 
sion, volume 1063 of Lecture Notes in Computer 
Science, Cambridge, UK, Apr. 1996. Springer- 
Verlag. 

The algorithm has been applied to a number of 
scenes with good results. The saliency measure of 
Equation 8 produces curve matches with interesting 
symmetries in the top ranking of S(C,  C') values. Fig- 
ure 4 illustrates the saliencies of the top four matching 
segments for an image of an orchid. Figure 5 illustrates 
the top curve match for an image of an butterfly. 

[5] T... J. Cham and R. Cipolla. Symmetry detection 
though local skewed symmetries. Image and Vi- 
sion Computing, 13(5):439-450, 1995. 

6 Remarks 
[6] Y .  Chen and G. Medioni. Object modeling by 

registration of multiple range images. Image and 
Vision Computing, 10(3):145-155, 1992. 

The effectiveness Of the proposed mea- [7] M, Fleck, D,  Forsyth, and C, Bregler. Finding 
naked people. In Buxton and Cipolla [4], pages sure to  capture plausible object symmetries has been 

demonstrated on reasonably complex and interesting 
scenes. A number of improvements can readily be 
made which should significantly improve both the se- 
lectivity of Equation 8 and the efficiency of the search 
for corresponding curves. 

593-602. 

[8] D. P. Huttenlocher, J. Noh, and W. Rucklidge. 
Tracking non-rigid objects in complex scenes. In 
Proceedings of the 4th International Conference 

0 The projective transform T should be constrained 
to prohibit the projection of the line at infinity 
onto or between curve pairs, thereby excluding 
matches from complex curves to  nearly straight 
lines corresponding to  the curve being projected 
to  the horizon line. 

The current algorithm uses tangent lines at in- 
flection points to  establish initial correspondence, 
but still involves a combinatorial search of pairs 
of curves. A better approach would include the 
use of invariant local curve measures to prioritize 
and prune the search. 

on Computer Vision, pages 93-101, Berlin, Ger- 
many, May 1993. IEEE Computer Society Press. 

[9] T. Leung and J. Malik. Detecting, localizing and 
grouping repeated scene elements from an image. 
In Buxton and Cipolla [4], pages 546-555. 

[lo] C. Springer. Geometry and Analysis of Projective 
Spaces. Freeman, 1964. 

[ll] L. Van Gool. Classification of projective symme- 
tries. Technical Report Notes of 2nd Invariant 
Institute, Ennis, Ireland, Katholieke Universiteit 
Leuven, 1995. 

0 The curves currently tested for saliency are un- 
likely to form complete boundaries of symmetric 
objects. Therefore, the ability to  extend match- 
ing curve sections to cover the full symmetric in- 
tervals of the curves will be important to realizing 

[I21 M. Zerroug and R. Nevatia. From an intensity im- 
age to 3-6 segmented descriptions. In J. Ponce, 
M. Hebert, and A. Zisserman, editors, Object 
Representation in Computer Vision II, pages 11- 
24, 1996. 

the full potential of the techniques proposed here* (131 A. Zisserman, J ,  bfundy, D,  Forsyth, J ,  Liu, ~- 
N. Pillow, C. Rothwell, and S. Utcke. Class-based 
grouping in perspective images. In Proceedings 
of the 5th International Conference on Computer 
Vision, pages 183-188, Boston, MA, June 1995. 
IEEE Computer Society Press. 
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