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A Feature-Based, Robust, Hierarchical
Algorithm for Registering Pairs of Images
of the Curved Human Retina
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Abstract—This paper describes a robust hierarchical algorithm for fully-automatic registration of a pair of images of the curved human
retina photographed by a fundus microscope. Accurate registration is essential for mosaic synthesis, change detection, and design of
computer-aided instrumentation. Central to the new algorithm is a 12-parameter interimage transformation derived by modeling the
retina as a rigid quadratic surface with unknown parameters, imaged by an uncalibrated weak perspective camera. The parameters of
this model are estimated by matching vascular landmarks extracted by an algorithm that recursively traces the blood vessel structure.
The parameter estimation technique, which could be generalized to other applications, is a hierarchy of models and methods: an initial
match set is pruned based on a zeroth order transformation estimated as the peak of a similarity-weighted histogram; a first order,
affine transformation is estimated using the reduced match set and least-median of squares; and the final, second order, 12-parameter
transformation is estimated using an M-estimator initialized from the first order estimate. This hierarchy makes the algorithm robust to
unmatchable image features and mismatches between features caused by large interframe motions. Before final convergence of the
M-estimator, feature positions are refined and the correspondence set is enhanced using normalized sum-of-squared differences
matching of regions deformed by the emerging transformation. Experiments involving 3,000 image pairs (1,024 x 1,024 pixels) from
16 different healthy eyes were performed. Starting with as low as 20 percent overlap between images, the algorithm improves its
success rate exponentially and has a negligible failure rate above 67 percent overlap. The experiments also quantify the reduction in
errors as the model complexities increase. Final registration errors less than a pixel are routinely achieved. The speed, accuracy, and
ability to handle small overlaps compare favorably with retinal image registration techniques published in the literature.

Index Terms—Robust estimation, registration, transformation estimation, image mosaic, retinal imaging, feature extraction, feature
refinement, multiscale methods, ophthalmic image processing, biomedical image processing.
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HE problem of registering two or more data sets is

fundamental to many applications of computer vision
and medical image analysis. These applications are as
diverse as industrial inspection, aerial image analysis and
cartography, virtual reality, surgical planning, change
detection, and treatment monitoring. Solving the registra-
tion problem requires estimating the transformation(s)
between data sets and applying them to place the data in
a common coordinate system. The data may be two-
dimensional intensity images [12], range images [10], [18],
or volumetric images such as CT scans, MRIs, or confocal
stacks [3], [21]. Many techniques have been proposed to
solve the registration problem in many different forms. For
reviews, see [12], [21], [32].
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One medical application where registration techniques
are increasingly important is in automated techniques to
assist in the diagnosis and treatment of diseases of the
human retina. For instance, two images taken before and
after laser surgery can be registered to detect locations of
scars and burns [7]. Two images taken of the same eye but
at different times can be registered to track the progress of
diseases such as macular degeneration, glaucoma, and
AIDS/CMV retinopathy [31], [48]. A series of images of the
same retina can be registered to form a mosaic image,
giving a complete view of the retina [33]. Finally, real-time
(frame-rate) registration methods may be used as the basis
for tools that assist ophthalmologists during laser surgery
and other related procedures [5], [8], [9].

Despite the importance of the problem and prior
research effort, retinal image registration has remained a
difficult problem [5], [20], [26], [33], [35]. Several challenges
must be addressed in developing reliable automatic regis-
tration techniques. These challenges are special cases of
difficulties that arise in other applications.

e The surface of the retina is curved, almost spherical.
The interimage transformation model must take this
into account.

e The images are acquired using an imaging system
whose optics include the unique optics of each eye,
making prior calibration of the system difficult.
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Fig. 1. The fundus camera imaging set-up: (a) shows the patient in an imaging harness and (b) shows the ring of illumination.

e [llumination, which comes from outside the eye, is
necessarily viewpoint dependent and can cause
glaring, as well as fade-outs. As a result, a region
of a retina might have substantially different
intensity properties in different images (Figs. 1
and 2).

e Image overlap may be small due to large changes in
viewpoint between images.

e Large regions of retinal images are relatively
textureless. The predominant features are the blood
vessel structures and, in some images, the optic disk.

e Blood vessel widths can be as narrow as two or three
pixels. Precise registration is therefore necessary for
accurate change detection and mosaic formation.

This paper is the first of two devoted to solving the retina
image registration problem. The current paper addresses
the problem of registering a pair of retinal images. The
second paper [16] addresses the problem of simultaneously
registering multiple retinal images to form a mosaic.
Together, they describe a set of algorithms that are currently
being tailored to several ophthalmic applications.

Three main contributions are described in this paper. The
first is the derivation of a 12-parameter interimage
transformation model that accounts for the curvature of
the retinal surface and the motion of the eye between
images. The second is a hierarchical, robust algorithm for
estimating the parameters of this model given a pair of

l(\

retinal images. The algorithm, which could be generalized
to other applications, uses branching points and crossover
points in the retinal vasculature detected using a recursive
tracing algorithm [14]. The final contribution is a method to
refine feature positions while estimating the transformation
parameters. This refinement step is necessary for achieving
the final accuracy of the registration. Extensive experimen-
tal results demonstrate the effectiveness of our model and
registration techniques and provide important quantitative
insights into the accuracy and reliability of the algorithms.
Overall, the algorithm is faster and provides more accurate
registration on higher-resolution images than algorithms
published in the retinal image analysis literature.

2 IMAGE TRANSFORMATION MODEL

2.1 Retinal Imaging Instrumentation

Current methods for imaging the retina include the
standard fundus microscope, the slit-lamp microscope,
and the laser-scanning ophthalmoscope [22]. All of the
images for this study were obtained using a TOPCON
IMAGENET digital fundus camera (Fig. 1a). This instru-
ment illuminates the dilated retina in a ring pattern (Fig. 1b).
The illuminated retina is imaged onto a CCD array with a
1,024 x 1,024 pixel resolution and eight bits per pixel. Fig. 2
shows three sample images of a healthy human retina. The
image on the left also serves to illustrate glare—a common

Fig. 2. Three example 1,024 x 1,024 images of the retina surface. These images have relatively little overlap between them.
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Fig. 3. An illustration of the eye and retina, with two different camera viewpoints C, and C,,.

artifact. Asking the patient to fixate on a lighted target
(Fig. 1b) and adjusting the angle of the instrument relative
to the eye can enable the photographer to take pictures of
the retina from a variety of angles.

2.2 Modeling Assumptions

The retinal surface is almost, but not quite, spherical [22]. A
quadric surface model is a good approximation to its shape.
We restrict this further to a quadratic surface, as described
below, for mathematical simplicity.

Next, consider the relative motion between the eye and
camera (Fig. 3). During imaging, a patient’s pupil is dilated
and his/her forehead is held against a harness (Fig. 1). Small
shifts in head position are likely, inducing translations and
rotations of the eye. Eye movements themselves, incomple-
tely constrained during diagnosis or surgery, are almost
exclusively rotational and occur about two axes at rates of up
to 180° per second [39]. Significantly, neither axis of rotation is
the optical axis. Finally, except for detached retinas, we may
reasonably assume the retina is rigidly attached to the back of
the eye. Together, these observations imply that the apparent
motion of the retina should be modeled as a general rigid
motion. They also imply, however, that some components of
the motion—rotation about the camera’s optical axis in
particular—will be small. This fact will be used in the
estimation technique described in Section 4.

The final assumption concerns the image formation
model. Cameras used for fundus imaging have long focal
lengths and planar CCD area sensors. The portion of the
retinal surface visible in any image is roughly parallel to the
image plane of the camera, even as the eye rotates. This
suggests that perspective effects are minor and a weak
perspective camera model may be sufficient. On the other
hand, the optics of the eye are part of the imaging system
since light reflected off the retina passes through the lens of
the eye before reaching the camera. This suggests that prior
camera calibration may not be possible.

2.3 Transformation Model Derivation

Consider two images of the retinal surface, I, and I, taken
from two different viewpoints or, equivalently, by two
different cameras, C, and C, (see Fig. 3). Let P” = (X,Y, Z)
and QF = (X',Y, Z’ ) denote the same point on the retina
surface, but expressed in 3D coordinate systems attached to

C, and C,, respectively. The quadratic surface equation,
which relates X, Y, and Z, is:

Z =M X* 4 AXY + Y2+ AuX + AsY + A (1)

in the coordinate system of C,. Here, A;,..., A are
(unknown) parameters. The assumption of a rigid transfor-

mation between viewpoints relates P and Q as follows:

Q=RP +1t, or,

X' 1 T2 T13 X ty )
Y| =|ra e 723 Y|+ 1],
A r3L T 733 Z t.

where R is the orthonormal rotation matrix. Finally, let the
weak-perspective camera projection matrices be:

ap 0 0 ¢ o 0 0
M,=10 a 0 ¢ |adM=|0 «o 0 c
0 0 0 s 0 0 0 ¢

(3)

in the coordinate systems of I, and I, respectively. Here,

Oy, oy, o, and a; are pixel dimension parameters, (c,,c,)
and (c, c,) are the centers of projection (nodal points) in the
two cameras, and s and ¢ are scaling parameters of the
weak perspective projection. Based on these equations (and
using homogeneous coordinates), the image projections of

P in image I, and of Q in image I, are:'

X , X
wx v w'z v
wy | =M, 7 and w'y | =M, 7 |
w 1 w' 1

which yields:

T aXte z o X'+,
P= (y) = ayYZJFUy and q= <y’ ) = (x;/}f'-%—cf/ .
P 5
(4)

Our goal, using the foregoing definitions, is to derive the
transformation that maps image coordinates p in I, to image

1. Using homogeneous coordinates, the symbol =
a scale factor.

means equality up to
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coordinates q in I,. First, inverting the relationship between
2D image coordinates and 3D coordinates in (4) gives

(=)o

Substituting these into (1) allows us to write Z in terms of
image coordinates  and y as follows:

Z = a12® + aszy + a3y’ + asx + asy + ag,

where the parameters a; combine the original parameters 4;
from (1), as well as the camera parameters. (For example, a; =
Ays*/a? and as = A»s®/(a,).) Next, substituting the equa-
tions for X, Y, and Z into (2) gives expressions for X’ and Y

sr—c, sY—¢
m oy st T ay ‘+ r13°

X B (a1x2 + aszy + asy® + aux + asy + ag)
Y’ - sT—

sy—c,
o rgg 4 13-
Y

21—,

(@12 + asxy + azy® + asx + asy + ag)

Substituting these equations into (4) gives an expression
for pixel coordinates (2/,4/)" in image I, in terms of the two
sets of camera parameters, the rigid transformation para-
meters, the quadratic surface parameters, and, most
importantly, pixel coordinates (z,y) in image I,. Since all
of these parameters are unknown except the image
coordinates, we can consolidate the resulting equation as

z' 0 b2 b3 b 015 O 2 2 T

! = b 9 b b ) ]‘ b
(y ) (921 Ogp O3 Ooy Oa5 O (x WYLy )

(6)

where the matrix entries ¢;; are functions of the camera,
surface, and rigid transformation parameters. It is impor-
tant to note that we only need to know the 6;; values in
order to transform the pixels from one image to the next.
These are the parameters estimated by our algorithms.
Finally, we may summarize the derived transformation as

CH
q= X(p) = 6X(p), (7)
e;

where @? =(0a,...,05),1=1,2, and

X(p) = (2%, 2y, %, 2,y,1)" .

Equation (7) has several important properties. It gen-
eralizes the 2D affine transformation model induced by the
rigid motion of a planar surface [6], which is given by:

q=Ap—+t. (8)

(See [46], [54] for other recent generalizations.) Observe,
also, that (7) is the second-order Taylor series expansion of
the general image transformation equation, while the affine
model (8) is the first-order expansion.

As analyzed in detail in Section 6.4, registration
errors using the 12-parameter model average 0.83 pixels
on1,024 x 1,024 images. By contrast, the average registration
error using the affine model is 2.2 pixels and the average
registration error using translation only is 5.0 pixels. These
results are significant since reported prior work [40], [56] has
been based on affine or simpler models, tested on images of

size 512 x 512 or smaller. Matsopoulos et al. [35] studied the
use of bilinear and projective transformation models, but
could not show improvement over the affine model (see
Table 1 in their paper). Current clinical instruments are
already producing images of size 1,024 x 1,024 or larger and
are scheduled to approach 2, 500 x 2,500 [30]. Our proposed
model is expected to hold up much better with these higher-
resolution images.

3 FEATURE EXTRACTION

The main problem in registering a pair of images, I, and I,
is estimating the 12 parameters of ©, which determines the
inter-image transformation. In designing an algorithm to
solve this problem, we must first choose the image
primitives—pixels, regions, or features—on which to base
the estimation process. For several reasons, a feature-based
method is attractive. First, as discussed in the introduction,
I, and I, may be captured under vastly different illumina-
tion conditions, and parts of the retinal surface may
undergo changes as well, making direct, image-wide
comparison of intensities, or even intensity gradients less
than ideal. Second, outside the vasculature, the intensity
structure is relatively homogeneous. Third, the vasculature
and its bifurcations are currently used as spatial landmarks
by ophthalmologists and in much of the published
literature in this area [4], [35], [56]. Finally, except for
detachments, the retina is rigidly attached to the back of the
eye. Hence, the branching and crossover points of the blood
vessel structure serve as our features. The remainder of this
section summarizes our algorithm to detect these features.

The obvious approach to detecting the vascular landmarks
is to apply an edge detector to the input images, pair
antiparallel edges to detect the blood vessel boundaries,
and then extract landmarks by edge following and corner
detection [25], [56], [40]. Indeed, a variation of this approach
was used in our prior work [4]. Recently, however, we have
published a dramatically faster approach based on the notion
of exploratory image analysis [14]. Edge detection principles
are applied, but as part of an exploratory procedure that
traces out the vascular structure from seed points. The seed
points are found using 1D edge detection along a series of
evenly spaced rows and columns. The exploratory procedure
traces out the vasculature structure using elongated edge
detection filters, recording centerline locations along the way.
Landmarks are placed at intersections of traces and at
locations where three or more traces meet. These landmarks
are characterized by the orientations and widths of the
associated blood vessels. Typically, 30-50 landmarks are
found in each image. An example result is shown in Fig. 4.

Overall, the algorithm concentrates computation only on
the relevant subsets of the pixels; upwards of 75 percent of the
pixels are never touched. A version of the algorithm has been
implemented to run at frame rates on an SGI workstation [1].
In a recent paper, we have shown how to optimally prioritize
the exploratory tracing for real-time performance [47].

4 ESTIMATING THE TRANSFORMATION
PARAMETERS AND THE FEATURE
CORRESPONDENCES

The next step is to use the vascular landmarks to estimate
the transformation parameters for a pair of retinal images.
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Fig. 4. lllustrating the recursive tracing of the vasculature and detection of vascular landmarks: (a) the initial grid, (b) the traced centerlines, and

(c) the detected landmarks.

Several challenges must be overcome. First, the overlap
between images may be small. Second, vascular land-
marks are not uniquely identifiable because branching
angles at bifurcations are similar across the retina [37],
[38]. Combined, the large interimage motion between
frames and resulting small image overlap, shows there
will be many different possible matches for each land-
mark, yet many landmarks may have no correct matches
at all. In turn, this means we cannot solve the problem of
establishing correspondence between landmarks prior to
estimating the transformation; the correspondence and
parameter estimation problems must be solved jointly. The
third challenge is the high dimensionality of the transfor-
mation model, which makes exhaustive search impractical.
Overall, these observations imply that the matching and
transformation estimation problem in registering retinal
images requires a more sophisticated algorithm than has
been proposed for related problems such as fundamental
matrix estimation [53], [57].

4.1 Hierarchical Estimation Algorithm

Successfully estimating the parameters of the high-dimen-
sional transformation © requires good initialization, espe-
cially since correspondences cannot be established reliably
in advance. The natural approach is to obtain initial
estimates from lower-order models. This suggests a
hierarchical estimation strategy, such as adopted in much
of the closely related literature [6], [29], [32], [43], [44]. To
estimate ©, we adopt a three-level hierarchy, beginning
with a rough estimate of 2D translations, continuing to an
affine estimate, and ending with the quadratic transforma-
tion, ©. At each level, a different robust estimation
technique is applied and the set of possible correspon-
dences is culled. Use of the initial translation estimate
assumes approximately constant scale and small rotations.
Scale changes can be kept small by ophthalmic photo-
graphers. Rotation in the image plane is generally small
because the patient is constrained in a harness, eye rotations
about the optical axis are small, and eye rotations about the
other axes mimic translation except over broad image
regions. The affine model is appropriate because the retinal
surface is roughly planar over small regions [4]. This

explains why the affine transformation model yields
modest errors and has been used in much of the related
work [35], [40], [56].

4.2 Zeroth Order, Translation

A weighted histogram technique is used to estimate
the translation vector t;, representing the zeroth-order
transformation:

To(p; to) = p + to- 9)

Let the vascular landmark sets from the two images be
denoted P and Q, with N, =|P| and N, =|Q| points,
respectively. The algorithm forms a two-dimensional
histogram of translation vectors with relatively large bin
sizes—large enough to accommodate both feature position
errors and the modeling error induced by using a zeroth
order model. An initial correspondence set, Cy = P x @, is
established containing all possible correspondences. For
each (p;,q;) € Cy, both t;;=q;—p, and a similarity
measure s; ;, described below, are calculated. Then, s;; is
entered in the histogram bin containing t; ;. After doing this
for all correspondences in Cy, the histogram is smoothed
and the peak is detected (Fig. 5). Finally, a new correspon-
dence set C; is formed that contains all matches (p;,q;)

Fig. 5. Sample plot of the 2D similarity-weighted histogram for an
image pair.
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such that t; ; is within twice the histogram bin width of to.
Some landmarks will have several correspondences in Cj,
while others will have none.

The similarity measure s; ; for a possible correspondence
(p;»q;), is computed in two steps. First, a raw measure is
computed based on the orientations of the vascular center-
lines that meet at the intersection points. For landmark
location p; from image I, these direction vectors are denoted
4, ,, and, for landmark location q, from image I,,
these are denoted V;1,...,V;,,. Importantly, n; and n;, the
number of direction vectors for landmarks p; and q;,
respectively, may be different, even for correctly matching
landmarks because the tracing procedure cannot be guaran-
teed to detect all vessels. Define I' to be an n; x n; binary
matrix determining correspondences between centerline
trace directions for p; and q;. I is constrained so that each
row and each column has at most one nonzero entry. Then,
the raw similarity measure s; ; is defined as a maximum over
all correspondence matrices as follows:

117;‘1,...,

1
/ maxz T(k, 1) (0 - v+ 1).

Sij :m DY

(10)

It is straightforward to show that 0 <} . < 1.

The second step to calculating the s1m11ar1ty measure is
to convert Si,j to a prior probability that (p;,q;) is correct.
Experimental analysis shows that s ; must be almost exactly
1.0 for the correspondence to be correct and that the
probability that (p;,q;) is correct given the raw similarity
s; ;» is well approximated by a power transform.
Thus, the final similar measure is

, (e}
Sij = (%j) )

with o empirically set at 100. For example, s;;=0.99
converts to s; ; = 0.37. See [13] for details.

The above similarity measure is translation and scale
invariant. Zana and Klein [56] proposed a similar measure,
based on minimizing the angular displacement between
landmarks. Our measure improves upon this by handling
bifurcations as well as trifurcations, by not requiring
explicit calculation of angles and, especially, by using the
power transform to obtain an estimate of the probability the
match is correct given the raw similarity measure.

4.3 First-Order, Affine Model

The next level of the hierarchy estimates an affine
transformation,

measure,

Ti(p; A, t1) = Ap + ty,

starting from the reduced correspondence set C; deter-
mined by the similarity-weighted histogram technique. The
technique used to estimate A and t; is a slightly modified
least-median of squares algorithm (LMS) [41], [50].

Let P; C P contain the features from I,,, having at least
one match in Cy, and, for each p € Py, let

Ci(p) ={a| (p,aq) € Ci}.

Note that, if the overlap between images is small, P will be
much smaller than P. The LMS estimate of the affine
parameters is

(A,t;) = argmin median min |jq— Ap — t||°.
At peP1  qeCi(p)

(11)

In other words, the objective function for a given (A, t;) is
calculated by finding the minimum distance match for each
transformed p € P; and then taking the median of the
resulting squared (error) distances. This differs from other
well-known uses of LMS—e.g., in estimating the funda-
mental matrix [53], [57]—because uniqueness in the
correspondence set is not (and should not be) enforced at
this level of the computation.

The objective function in (11) is not differentiable, partially
due to use of the median and partially due to the selection
process in choosing the best correspondence for each (A, t1).
As aresult, we use a random sampling search technique [23],
[41], [50] to find the approximate minimum of the objective
function. The method differs only slightly from the techni-
ques proposed in the original LMS [41] and Random Sample
Consensus (RANSAC) [23] papers. Triples of landmark
locations, p;, p;, Py, are chosen at random from P;. For each
such triple, each possible combination of matches, one from
Ci(p;), one from Cl(pj), arAld one from C;(p;), is used to
calculate a unique A and t; parameter set. The objective
function in (11) is analyzed for each set. The set minimizing
the objective function is retained. This process is repeated for
S triples and the parameter set minimizing the objective
function over all triples becomes the affine estimate (A, 1).5,
the number of sample triples required to ensure with high
probability that at least one triple contains landmarks, each
having a correct correspondence in Cy, is determined using
standard methods (see [23], [41], [50]).

After minimization, a robust scale value, &, is
calculated from (A, ) using the median absolute devia-
tion (MAD) scale estimator [42]:

median mln Hq Ap — 4%

5
51 = 1.4826 |1 + ————
o |: + |P1| — 3:| peP;  qeCi(p

(12)

The factor 1 +5/(|P,| — 3) is an experimentally determined
finite-sample correction factor proposed by Rousseeuw and
Leroy [42] to avoid artificially low values of ¢, caused by
small point sets. The constant 1.4826 ensures that &, is
“consistent with a normal distribution”—in other words, if
the errors ||q — Ap — t,| were independent and normally
distributed then 62 would be an unbiased estimate of the
variance of this distribution [50].

The final step in LMS and other “high-breakdown”
robust estimation procedures—i.e., those relatively unaf-
fected by large numbers of outliers—is usually to refine the
estimate by gathering inliers and calculating a least-squares
estimate. This step is left out here because our next step is to
switch to estimation of the full quadratic transformation
parameters.

Before discussing this, however, itis important to consider
why other robust procedures are not used in estimating
(A, t,). The obvious alternative to LMS is a RANSAC method
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Fig. 6. Plots of the robust loss function p (a) and weight function (b) for the Beaton-Tukey biweight, the Cauchy loss function and the quadratic error
function used in least-squares. The Beaton-Tukey is chosen because it most aggressively rejects outliers.

[23]. This would estimate A and t; by maximizing the number
of landmarks having a correspondence whose error is less
than a given threshold D,. Stated explicitly, the estimate
would be

(A, ;) = argmax
Aty
[{pePi : 3qe Ci(p), [a—Ap—tif <Di}|.
(13)

The problem is establishing the distance threshold, D;.
Clearly, it must depend on errors in the estimate of
landmark positions. More importantly, it must depend on
the modeling error introduced by using an affine model.
This error is difficult to predict, however, because it varies
with the amount of overlap between images, as well as the
positions of the landmarks. The LMS objective function is
more reliable because the landmark set P;, which is
calculated from the initial translation estimate, generally
includes landmarks taken from near or within the region of
overlap and, as a result, at least 50 percent of the landmarks
in P; have correct matches. If this fraction became a
concern, we would switch to generalizations of LMS such as
MUSE [36] that adaptively choose the inlier fraction,
including fractions well below 50 percent.

4.4 Second Order, Quadratic Model

The final level of the hierarchy estimates the quadratic
transformation,

T»(p; ©) = ©X(p),

(see (7) and discussion) using an M-estimator [27], [50].
We describe first a straightforward instantiation of the

M-estimator and then show several important modifications.
For each p; € Py, let

q; = argmin ||q — Api - ﬁlHZ‘
qeCi(pi)

In other words, q; is the best match for p; based on the
estimated affine transformation. Then, the M-estimate of © is

6= argénin Z pllla; — ©X(p;)ll/5),

piEPy

(14)

where p is a “robust loss function,” which grows subqua-
dratically, and & is a scale estimate. Here, we use the
Beaton-Tukey biweight function [2] (Fig. 6):

Mm_{%h—a—®5ﬂ

& lu| > a,

o

lul <a

o2

where u = ||q — © X(p)||/5 is a “scale normalized residual.”
(Typically, a =~ 4.0 [28].) Equation (14) may be solved using
iteratively-reweighted least-squares (IRLS) [28], with
weight function w(u) = p'(u)/u. For the Beaton-Tukey
biweight (Fig. 6)

mw—{h—@T ] < a

0 lu| > a.

The value u; for each match in each iteration is calculated
using the estimate of © obtained in the previous iteration. A
robust starting point for IRLS is crucial, as has been
confirmed experimentally in vision applications [53].

Several modifications of the estimation equation (14) and
IRLS search technique are important here:

1. The M-estimator is initialized from the affine
estimate (A,t;) and scale ;. These are used to
compute initial scale normalized residuals

U = HQi - Api - £1||/61

and to compute initial weights to be used in IRLS.

2. A new (MAD) scale, 55, is estimated from the
residuals after each of the first few iterations of the
IRLS procedure and then fixed for the remaining
iterations.

3. Because w(u) =0 for residuals (error distances)
greater than about 445, there is no need to restrict
the match set in (14). The entire original set Cy may
be used since matches with large error distances
simply contribute zero weight. (In practice, loose
restrictions are placed purely for computational
reasons.) This allows recovery from earlier mistakes
in reducing the match set.

4. Therobustweights w(u) are augmented in IRLS by the
correspondence similarity measure (10) and when
more than one match for a given p € P has nonzero
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weight, these weights are normalized. For example, if
(p,q) and (p,q’) are two matches for p, with robust
weights w and ' and similarity measures s and ¢/,
then the actual IRLS weights will be:

sw s

o0

.
w=sw and v =sw

sw+ s w swH+ s w’

In effect, the third and fourth modifications allow
decisions about correspondence to be deferred until the
final transformation is estimated. This differs signifi-
cantly from other robust matching and estimation
algorithms [53], [567] and is an important reason why
the algorithm is so successful. Correct correspondences
are determined to be those having nonzero weights.
More than one such correspondence for any p
indicates a lingering ambiguity, which is usually
caused by merging blood vessel intersections into a
single feature in one image, but not in the other. This
problem, together with uncertainties in the positions
of the landmark features themselves, necessitates the
final step:

5. After the estimate converges, the landmark positions
are refined using the estimated transformation and
then the correspondence set is increased by searching
for landmarks detected in one image, but missing in
the other. These two steps are applied in sequence and
the M-estimator is rerun to convergence after each.
The methods used are detailed in the next section.

Convergence of the M-estimator generally requires only a
small number of iterations each time: 5-10 initially and 2-3
after refinement and increasing the correspondence set.

5 METHODS FOR REFINING FEATURE POSITIONS
AND ENRICHING THE CORRESPONDENCE SET

Accurate pairwise registration requires repeatability in
detected feature (landmark) locations (see discussion in
[45]), especially when the overlap between images is small.
Unfortunately, differences in illumination and viewpoint,
as well as noise, can cause the same landmark in two
images to vary in its detected location (after registration) by
several pixels. The same problems can also cause a
landmark to be detected in one image but missed in
another. This results in a reduced correspondence set.

Both problems can be addressed as the pairwise registra-
tion converges. The transformation estimate can be used as
the basis for refining landmark locations and for detecting
landmarks previously missed [49]. As already discussed, this
can be used to refine the transformation estimate.

5.1 Feature Position Refinement

Suppose p; and q; form a landmark feature correspondence
and let the estimated transformation parameters be O. Let
the transformed position of p; from image I, to image I, be
qf = éX(pi). Differences between q; and q; are caused by
three factors: modeling error, estimation error in ©, and
discrepancies in the detected landmark positions p, and q;.
We would like to reduce the latter as much as possible. The
idea is to transform a region surrounding p; from I, to I,
using © and locally match the transformed region to I, by

minimizing a sum-of-squared-differences (SSD) measure.
(This region generally includes the current location for q;.)
The SSD match becomes the new location for q;. Local
intensity normalization in each image is used to partially
correct for illumination differences.

The most important question is how to map the intensity
region R; from image I, to image I,. The simplest method is
to ignore the warping induced by the quadratic transforma-
tion and simply translate the region between images—
specifically by the vector ©X(p;) — p;. We can do substan-
tially better using a centered affine approximation to the
quadratic transformation. This gives an invertible transfor-
mation that simplifies the mapping process while still
accounting for the distortion induced by the higher-order
transformation.

The centering process is straightforward. First, decom-
pose 6 into

6 = (BJA[t),

where B, A, and t are 2 x 3, 2 x 2, and 2 x 1, respectively,
and give the second, first, and zeroth order terms of the
transformation (7). Also, let p; = (z;, ;)" . For any point p =
(z,y) near p;, let p=p—p, = (a:’,y/)T be the recentered
point. Then, after some manipulation

OX(p) = ©X(p; + P');

25!3’7; 0 ,
. T
=O6X(p) + |A+B| y ( ,>
0 2)]"
(@)’
+ B .T/y/ ;
(v)?
~q; +A'p,
where
A=A +B Yi x;
0 2y

This affine approximation is accurate because ||p’|| is small.
The inverse transformation for g near g7 is A! (a—qf) +p;.

Using this affine approximation and its inverse (Fig. 7),
the details of estimating a refined feature position in I, are
as follows: A square W x W window, denoted by R,
centered at q; is defined in image I,. W is locally set to
twice the pixel width of the vessels intersecting to form the
landmark in I,. For each pixel location q in R, q is inverse
mapped into [, and bilinear interpolation is used to
estimate the intensity from the surrounding pixels. This
becomes the intensity at q in R,. Once all pixel locations
have been mapped, the intensity values in R, are centered
and normalized. Then, R, is shifted over a 2U x 2U region
centered at g} to minimize the normalized SSD. (U is set to
three times the error standard deviation &5 of the current
transformation estimate.) Parabolic interpolation gives
subpixel position accuracy in both dimensions. This
becomes the new location for g;.
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Fig. 7. Use of the affine approximation and its inverse in feature position refinement. Each pixel q in window R, of image I, is inverse mapped into I,
using the inverse of the affine approximation, A’"', to obtain a pixel value. Since the inverse mapping will generally not place q on a discrete location

in I, bilinear interpolation is used to calculate the value.

5.2 Adding Correspondences for Unmatched
Landmarks

Following a reestimate of 6 based on the refined landmark
positions, correspondences are added for unmatched land-
marks that fall into the region of overlap between trans-
formed images. The detection procedure for unmatched
landmarks in I, is exactly the same as the refinement
procedure. For unmatched feature locations in I, the first
step is to calculate a quadratic transformation estimate o'
mapping I, to I, by reversing the roles of the correspon-
dences. Then, feature matching proceeds as just described
(except with reversal of the roles of I, and ;). The resulting
new matches are added to the correspondence set and then

the final estimate, ©, is calculated using the M-estimation
technique.

6 RESULTS

The experiments are driven by several goals. First and
foremost, the effectiveness of the complete system must be
determined. Second, the significance of each step of the
algorithm must be analyzed. Third, the quadratic transfor-
mation must be validated.

6.1 Data Sets and Metrics
Ten to 20 1,024 x 1,024 images were acquired from each of
16 different eyes. Pairs of images within each data set were

Fig. 8. Successful registration for extremely low overlap between images—22 percent overlap. (See point “A” in Fig. 12.) The measured centerline

error is 1.01 pixels.
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Fig. 9. Successful registration for an image pair having 38 percent overlap. The measured centerline error is 1.5 pixels. (See point “B” in Fig. 12.)

chosen to cover a range of possible overlaps and fundus
regions—3,000 image pairs in total.

Registration error for any pair of images is determined
from the alignment of the vasculature following application
of the estimated transformation. Recall that the feature
extraction method [14], summarized in Section 3, extracts
both the landmarks—branching and crossover points—and
the centerline pixels of the blood vessels. The landmarks are
used for matching, the centerlines for validation. Letimage I,
be mapped onto I, using estimated transformation para-
meters ©. To calculate the registration error, sample the
centerline pixels p, in I, and map them into I, using ©. For
each mapped centerline location that falls within the retina
image area of I, find the distance to the nearest centerline
point in I,. This distance is easily calculated using a digital
distance map [11]. The median of these distances is taken as
the centerline mapping error. Median statistics are used to
discard error measures from missing or spurious centerlines.

The other quantity used in evaluating the registration
error is the percentage of overlap between images. For I,
and I,, this is defined as the fraction of I, appearing in I,.
Determining this requires knowing the interimage trans-
formation. For successful registrations, we can visually
judge the rough correctness of the results and therefore use
the estimated transformation to calculate overlap. For
unsuccessful registrations, we resort to using the joint
registration algorithm described in the companion paper
[16], which simultaneously combines all images from each
eye. When this joint registration succeeds, which we can

also judge visually, we use the resulting interimage
transformation from I, to I, to calculate overlap.

6.2 Performance of the Complete Algorithm

The performance of the complete pairwise registration
algorithm can be judged both visually and quantitatively.
Figs. 8, 9, 10, and 11 show several pairwise image mosaics
formed using successful registrations. A range of overlaps
between image pairs is shown. Nonlinear distortions
caused by the quadratic model are illustrated in Figs. 8
and 9 where the overlap is low.

Quantitative analysis requires more care. The primary
issue is determining a criterion for registration failure. Two
measures are used. The first is the number of correspon-
dences: If the number of landmark features in I, that have
possible correspondences in I, ever drops below six—the
minimum number needed to estimate the quadratic trans-
form parameters—registration immediately fails. These
failures are detected at the end of the zeroth and first
levels of the estimation order. When the estimation process
reaches the second level, an estimate © will always be
obtained. The second measure, therefore, must be based on
the magnitude of the median centerline error. The question
then becomes establishing an error threshold.

We do so using a plot of the centerline error measure
against the percentage of overlap between image pairs, as
shown in Fig. 12. Negative values on this graph show
failures due to an insufficient number of correspondences.
Positive values show the centerline error. Clearly, there is a
tight cluster of errors around 1.0 pixel. We establish an error
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Fig. 10. Successful registration for an image pair having 50 percent overlap. The measured centerline error is 0.92 pixels. (See point “C” in Fig. 12.)

threshold by manually judging the success or failure of
results at or above 1.0 pixel. Two potential choices of
thresholds are of particular interest. First, no incorrect
registrations have an error measure below 1.5. If the
threshold is set here—which means we minimize “false
positives”—18 percent of the registrations rejected are in
fact correct. Second, no correct registrations have an error
measure above 2.3. If the threshold is set here, meaning we
minimize “false negatives,” 1.2 percent of the registrations
accepted would be incorrect (false positives). In the
application, false positives are highly undesirable. Hence,
we fix the error threshold at 1.5 pixels for the remainder of
the discussion.

Given the two rejection criteria—the minimum number
of correspondences and the threshold on the median
centerline error—we can evaluate the performance of the
algorithm as a function of the percentage overlap and then
use this to pinpoint causes for the registration failures.
Fig. 13 shows a plot of the percentage of registration failures
as a function of the percentage of overlap. Clearly, an
insufficient number of correspondences is the primary
cause of failures, especially for overlap percentages below
40. Registration for small overlap percentages only succeeds
when the region of overlap is sufficiently rich in landmarks.
These cases are illustrated in Figs. 8 and 9.

Less frequently, registration fails despite having enough
correspondences. There are two reasons for such failures.
The first, illustrated in Fig. 14, occurs when the landmarks
are clustered in a small image region, making the estimated
transformation insufficiently stable for accurate registration
across the entire image. The second, illustrated in Fig. 15,
occurs when the overlap region contains nearly repeated
structures and estimation at the zeroth and first order levels
of the hierarchy initializes the quadratic transformation
M-estimator in the wrong domain of convergence.

6.3 Importance of Each Stage in the Hierarchical

Estimation

Now that the successes and failures of the overall algorithm
have been established, it is important to consider the
contributions of each stage of the algorithm. The plots in
Fig. 16 compare the centerline errors resulting from the
transformation estimated at each successive stage of the
algorithm, starting from the translation estimate at the
zeroth level of the hierarchy and moving all the way
through the landmark enrichment step. The plots in
Figs. 16a and 16b show that, as expected, increasing the
order of the transformation increases the accuracy of the
estimate. The plots in Figs. 16c and 16d show the
importance of the SSD-based landmark position refinement
and the landmark enrichment. Overall, the average error
after the translation estimation (zeroth level) is 5.0 pixels,
after the affine estimate (first level) is 3.0 pixels, after the
initial quadratic M-estimate (second level) is 1.56 pixels,
after landmark position refinement is 0.97 pixels, and after
landmark correspondence enrichment is 0.83 pixels. The
improvements obtained using the SSD are especially
striking since the order of the transformation remains the
same. We conclude, therefore, that the locally-centered,
affine SSD refinement is an important component of the
algorithm, both to increase the accuracy of landmark
positions and to increase the number of correspondences.

6.4 Validation of the Quadratic Image
Transformation Model

The final part of the analysis is to validate the quadratic
transformation model derived in Section 2. Important visual
evidence has already been given in the example pairwise
mosaics of Figs. 8, 9, 10, and 11. Quantitative evidence has
already been shown in the numerical accuracy of the final
registrations—0.83 pixels after landmark enrichment. More
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Fig. 11. Successful registration for an image pair having 75 percent overlap. The measured centerline error is 0.76 pixels. (See point “D” in Fig. 12.)

complete analysis may be obtained by estimating the
parameters of the best fitting (least-squares) translational
(zeroth order), affine (first order), and quadratic (second
order) transformation models using the final correspon-
dence sets for each successful registration. The final
correspondence set is preferred because the landmark
position refinement and enhancement substantially reduces
noise and estimation error.

The errors are plotted in two ways in Fig. 17. The plot in
Fig. 17a is a scatter plot of the median centerline error for

20 T

each model as a function of the overlap percentage. The
average centerline error for the translation, affine, and
quadratic models are 4.88, 2.47, and 0.83 pixels, respectively.
The error measures for each model that fall into the same
10 percent overlapping range are averaged and shown in the
plot of Fig. 17b. Notice that the error measure for the
quadratic model decreases only slightly with the amount of
overlap. In fact, this may not even be modeling error: It could
be due to increased stability of the estimate caused by an
increase in the number of landmarks. By contrast, the

Centerline Error Measure (pixel)

_5 1 1 1 1

I [ I I

0.3 0.4

I
0.5 0.6 0.7 0.8 0.9 1

Fraction of Overlap

Fig. 12. Overlap versus centerline error measure. The negative values on the graph indicate failures due to insufficient correspondences. The
horizontal line at 1.5 pixels is the threshold to reject an estimated transformation. The letters A, B, C, D, E, and F on the graph show the percentage
of overlap and the error measures of the registered images shown in Figs. 8, 9, 10, 11, 14, and 15, respectively.
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Fig. 13. Failure rate as a function of the overlap percentage. Failures due to an insufficient number of correspondences and due to above-threshold
centerline errors are both shown. The estimation algorithm nearly always fails when the overlap is less than 20 percent. With increasing overlapping
percentage, the failure rate decreases exponentially and, above 67 percent of overlap, the algorithm only failed for one out of 330 image pairs.

translational and affine errors increase slightly with increas-
ing overlap, reach a peak at 40-50 percent overlap, and then
decrease steadily.” This gives strong evidence that the
quadratic model closely approximates the true image-to-
image transformation. We conclude that the quadratic model
is the correct image-to-image transformation model to use.

7 DISCUSSION

The effectiveness of the three major components of our
algorithm for retinal image registration—the quadratic
transformation model, the hierarchical, robust estimation
procedure, and the feature refinement technique—have
now been demonstrated experimentally. Further under-
standing of the significance and novelty of these innova-
tions can be seen in comparison to related techniques in the
registration literature.

A variety of transformation models have been used for
registration, ranging from low-order models that may
include just rotation, translation, and scale to high-order,
nonlinear models that include global transformations, and
local deformations [6], [51], [52]. Our quadratic model fits
somewhere in between, but is more sophisticated than
models used in most global motion estimation and mosaic
construction algorithms. Similarly, most previous retinal
image registration methods have used simpler models,
especially multipoint warping, affine and bilinear transfor-
mations [4], [35], [40], [56]. The few exceptions where
higher-order models have been used have not been fully
automatic. Mathematically, the most closely related model
is the quadric reference surface of Shashua and Toelg [46],

2. The apparently counterintuitive result that error increases slightly
with increasing overlaps (below 50 percent) can be understood as follows:
The transformation model needs only to “explain” differences between
regions that appear in both images. When the overlap is small, the region is
small and, therefore, lower-order models produce lower error. As the
overlap increases higher-order models are needed to account for viewpoint
changes and retinal surface curvature, but as the overlap approaches
100 percent, the correct transformation approaches the identity transforma-
tion, meaning that lower-order models are sufficient again.

Wexler and Shashua [54]. Indeed, our transformation model
is a quadratic reference surface (based on a weak perspective
camera). Our experimental analysis on a large number of
data sets has shown that our model accurately describes the
retinal surface, sufficient to less than one pixel of registra-
tion error on 1,024 x 1,024 images. More complex models
may ultimately be necessary for some clinical conditions,
however. For example, a combination of our quadratic
transformation model with local deformations may be
necessary when registering images of a partially detached
retina or images of a retina with raised surfaces caused by
glaucoma or underlying tumors.

Turning now to the estimation technique, the first design
decision made was to use vascular landmarks as the basis
for registration. This choice is consistent with many other
retinal image registration algorithms [4], [35], [56]. Reasons
for the choice include viewpoint-dependent illumination,
the existence of stable features, and large interframe
motions. By contrast, many recent motion estimation and
mosaic construction techniques in the computer vision
literature are intensity-based [6], [29], [43]. These algorithms
are justified by quite different assumptions: slowly varying
illuminations, no assurance of stable features, and small
interframe motions.

Perhaps the most significant distinguishing property of
our algorithm is the hierarchy of transformation models and
associated robust estimation techniques. A number of other
motion and registration algorithms in the computer vision
and medical image analysis literatures have used a similar
model hierarchy [17], [29], [32], [43], [44], [51]; doing so is a
natural approach. Of particular interest here, Cham and
Cipolla [17] have developed a hierarchical, Bayesian method
combining Kalman filters and RANSAC methods to establish
feature correspondences over large image distances. By
contrast, we use the estimated transformation itself at each
stage of the hierarchy to cull the correspondence set and
initiate estimation at the next level. Overall, the danger of
using model hierarchies is that the estimation of lower level
transformations may provide insufficient or incorrect results
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Fig. 14. Overlapping region of incorrectly registered images where spatially localized landmarks caused the algorithm to fail (point “E” in Fig. 12.)
Several of the “ghost vessels” due to misalignment are indicated with arrows. The overlap is 28 percent and the centerline error is 2.63 pixels.

for upper levels of the hierarchy. For example, our translation
estimation technique would fail on large interimage scaling
or rotation about the optical axis. Addressing this issue is a
major direction of our ongoing research.

Robust estimation techniques have been used in a wide
variety of applications within computer vision. The most
closely related are those of Torr and Murray [53] and
Zhang et al. [57] for fundamental matrix estimation and
related problems. These algorithms match corners detected
in two different images of the same scene and use robust
techniques—RANSAC [23] and M-estimators [27]—to esti-
mate the fundamental matrix. Our estimation techniques go
beyond the algorithms of Torr and of Zhang in two ways:
The first is in the hierarchy of models and robust
estimation. The second and more important way is that
our algorithms do not assume unique correspondences, but
instead mix the selection of correct correspondences with
robust parameter estimation. Very few algorithms in the
literature do this. See [19] for one recent exception.

The last step of our estimation algorithm is landmark
refinement and correspondence enhancement based on the

Fig. 15. Overlapping region of incorrectly registered images where close
and similar landmarks caused the algorithm to fail (point “F” in Fig. 12).
Several of the “ghost vessels” due to misalignment are indicated with
arrows. The overlap is 41 percent and the centerline error is 3.02 pixels.

estimated transformation and a normalized SSD measure.
This type of coupling between transformation estimation and
feature detection has been used several times before. See, for
example, [24], [49]. In our application, we showed that it
reduces the average centerline error measure from 1.56 pixels
to 0.83 pixels, clearly demonstrating its significance.

Finally, our complete algorithm offers a substantial
improvements over current methods published for retinal
image registration. Several early algorithms used correlation-
based tracking for alignment of images within a sequence
[34], [55]. Clearly, these techniques do not handle large
changes in viewpoint. Our earlier method estimated a
similarity transformation from feature locations detected
with an interest operator [4]. Berger et al. used a Hausdorf
metric based on edges for affine estimation [8]. In practice,
they currently use a higher-order transformation based on
manual correspondences. Recently, Matsopoulos et al. [35]
published a retinal image registration method that used a
genetic algorithm and simulated annealing to search for a
globally optimum transformation. They obtained better
results with the genetic algorithm. Ritter et al. [40], by
contrast, used simulated annealing and found a strong trade-
off between accuracy and speed. Zana and Klein [56] used a
landmark feature-based technique and a Bayesian Hough
transform to search for the best similarity transformation,
which they then refined to obtain an affine transformation.
Overall, these methods tend to be much slower than our
hierarchical estimation technique. We exploit the blood
vessel structure to obtain a more efficient search algorithm,
which runs on the order of seconds rather than minutes. We
have also clearly demonstrated the effectiveness of our
algorithm as a function of image overlap. Finally, as
discussed previously, we use a higher-order transformation
for more precise registration on larger images.

8 ONGOING WORK

Our ongoing work is proceeding in several major directions:

e As reported in the companion paper [16], the
pairwise algorithm we have described here forms
the basis for a technique that combines multiple
retinal images into a seamless mosaic, giving a
nearly complete, high-resolution view of the retinal
surface. Together, the pairwise registration and
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Fig. 16. Comparison of the centerline error measures (in pixels) at the consecutive steps of the hierarchical estimator. The «z, y coordinates of a point
represent the error for the data pair of images for two consecutive stages of the algorithm: the earlier stage is the y value and the later stage is the
z value. The 45° line corresponds to equally accurate results. Points above the line correspond to the later stage giving more accurate results.

mosaic construction algorithms will form the basis
for a toolset that assists in diagnosing diseases of the
retina. As a preliminary step toward building this,
we will be providing a Web-based interface to our
algorithms. Our goal will be to expose the retina
community to our algorithms and to obtain experi-
mental data on a wider variety of images.

There are two important areas where the pairwise
registration algorithm can be improved. The first is in
handling extremely low overlap between images. The
plotin Fig. 13, showing the failure rate as a function of
overlap, clearly establishes a baseline for measuring
future progress. The second is in extending initial
translation estimation to handle rotations and scale

changes. Both of these are being addressed in ongoing
work by matching the detected blood vessel centerline
points in addition to the landmarks used here.
Finally, motivated by the need for computer vision
techniques to assist in retinal laser surgery and
related procedures, we are working toward devel-
oping real-time registration algorithms. These meth-
ods must be opportunistic, computing the most
reliable registration estimate in the minimum
amount of time. Progress toward this objective for
the exploratory tracing and landmark feature detec-
tion algorithm is reported in [47].

Our ultimate goal is to develop a complete set of computer
vision algorithms to assist in the diagnosis and treatment of
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Fig. 17. (a) shows the scatter plot of the centerline error measures of all pairs that are successfully registered, while (b) shows the average errors in
10 percent ranges. The centerline error measure for the quadratic model changes very little as the percentage of overlap changes, showing that the
quadratic model closely represents the true image-to-image transformation. The horizontal line at 0.4766 in both plots is the minimum error due to

quantization [13].

diseases of the human retina. The success of the pairwise
registration algorithm described here represents an impor-
tant milestone in this project.
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