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Rapid Automated Tracing and Feature
Extraction from Retinal Fundus Images
Using Direct Exploratory Algorithms
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Abstract— Algorithms are presented for rapid, automatic, ro-
bust, adaptive, and accurate tracing of retinal vasculature and
analysis of intersections and crossovers. This method improves
upon prior work in several ways: 1) automatic adaptation from
frame to frame without manual initialization/adjustment, with
few tunable parameters; 2) robust operation on image sequences
exhibiting natural variability, poor and varying imaging condi-
tions, including over/under-exposure, low contrast, and artifacts
such as glare; 3) does not require the vasculature to be connected,
so it can handle partial views; and 4) operation is efficient
enough for use on unspecialized hardware, and amenable to
deadline-driven computing, being able to produce a rapidly
and monotonically improving sequence of usable partial results.
Increased computation can be traded for superior tracing perfor-
mance. Its efficiency comes from direct processing on gray-level
data without any preprocessing, and from processing only a
minimally necessary fraction of pixels in an exploratory manner,
avoiding low-level image-wide operations such as thresholding,
edge detection, and morphological processing. These properties
make the algorithm suited to real-time, on-line (live) processing
and is being applied to computer-assisted laser retinal surgery.

Index Terms— Author: please supply index terms. E-mail key-
words@ieee.org for information.

1. INTRODUCTION

F INTEREST is the real-time tracing of the vasculature
and analysis of intersections and crossovers in live high-
resolution retinal fundus image sequences (1024 x 1024,
30 frames/s). Applications include montage synthesis and
navigation for reliable laser surgery [1], [2], perimetry, and
post-operative change detection. While the amount of work
done in ophthalmic vasculature tracing is limited [1], [3]-[7],
much related work has been done in X-ray angiography
{81-[30]. The present work has resulted in the adaptation, after
appropriate refinements, of techniques developed for X-ray
images to ophthalmology.
Real-time live ophthalmic processing presents several chal-
lenges [1], such as high image variability, the need for reliable
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processing in the face of nonideal imaging conditions, high
data rates, and short computation deadlines. Large variability
is observed between angiograms from different patients—even
if healthy, with the situation worsening when pathologies
exist. For the same patient, variability is observed under
differing imaging conditions (see Fig. 1) and during the course
of a treatment. Unlike industrial vision problems where the
conditions can be carefully controlled, retinal angiograms are
frequently subject to improper illumination, glare, fadeout,
loss of focus, and artifacts arising from reflection, refraction,
and dispersion. These effects are compounded by unavoidable
body and eye movements. This is true for even the best
available retinal imaging system. This issue does not arise
for nonlive imaging since the photographer can capture the
images when the imaging conditions are optimal. Real-time
analysis calls for the handling of large volumes of data in
short periods of time. Even as computing speeds increase,
it is likely that the data rates will continue to stress image
computing systems as frame rates, image sizes, number of
bits per pixel, and potentially, the number of spectral channels
[311, [32], inevitably grow in the future. This paper presents
algorithms that are not only adaptive enough to be useful and
reliable but are also efficient enough to handle the high data
rates of interest, even on standard workstations.

II. BACKGROUND

Broadly, two approaches exist for vasculature analysis. One
approach [3]-[6], [8]., hereafter referred to as the “pixel-
processing approach,” works by adaptive filtering or seg-
mentation, followed by thinning and branch point analysis.
These methods require the processing of every image pixel
and numerous operations per pixel. When these operations are
highly regular, they may be implemented on fast workstations
[8] and pipelined accelerators [6]. Some artificial intelli-
gence methods also require similar methods for preprocessing
[91-[11]. Generally, these methods scale poorly with image
size and are unable to provide useful partial results if a
computational deadline occurs.

The second approach, exemplified by this paper and several
others [8], [12], is referred to as vessel tracking, vectorial
tracking, or tracing. These methods work by first locating
an initial point and then exploiting local image properties to
trace the vasculature recursively. They only process pixels
close to the vasculature, avoiding the processing of every
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Fig. 1.

Sample live retinal video angiograms from healthy (upper two rows) and pathologic eyes (lower two rows) from different patients, illustrating

image variability. When controlling a surgical tool in an on-line system, it i3 necessary to be able to process as many frames as possible and to be

able to detect frames that were not processed satisfactorily.

image pixel, and so are appropriately called “exploratory
algorithms.” They have several properties that make them
attractive for real-time live high-resolution processing, since
they scale well with image size, can provide useful partial
results, and are highly adaptive while being efficient. As an
aside, numerous papers have been published on vectorization
of binarized images within the document image processing
literature {33]. Also, a parameterized variation of the tracing
approach, known as “snakes” [13], [21], is not considered here
since it is unattractive for tracing branched structures due to
problems with initialization.

Broadly, three exploratory processing techniques are de-
scribed in the literature. In the first technique, commonly used
in quantitative coronary analysis (QCA), the initial and end

points of the vessel (sometimes also the direction and width)
are entered manually [14]-[23]. Although these algorithms are
very accurate, they are unsuitable for real-time retinal image
processing since they require manual input and suffer from
high computational time, which are not compelling constraints
in QCA. In the second technique, the algorithm starts with
a manually-entered initial point and an initial direction, and
recursively tracks the entire arterial tree [24], [25], using a
breadth-first search. This would not be useful for retinal images
since the vessels are not necessarily connected, especially
in partial views. In the third technique, the algorithms auto-
matically extract the vascular tree without intervention. They
work well for coronary angiograms and have been applied
to three-dimensional (3-D) reconstruction [34]-[37]. Most of
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Fig. 2. (a) Grid search for seed points. Dots indicate detected local minima. (b) A result of running the validation rules for every pixel in the image. Straight
portions of vessels, and portions that are not “hollow” [e.g., boxed region in (c)] are detected. () Points in (b) that resulted in more than 10 iterations. (d)
Enlarged view of the boxed region in (c). Fig. 8 shows that the algorithm is not affected by such regions.

the techniques [26]-[29] utilize the centerline gray-level in-
tensities. In retinal angiograms, although the blood vessels are
darker than the local background, areas like the fovea are also
dark relative to the average background. This consideration has
motivated us to develop algorithms that rely on more localized
cues, such as contrast and edge gradients, similar to some of
the methods used in QCA [17}-[19]. This choice also enables
our algorithms to be more robust to lighting related artifacts
such as glare, dropouts, and overexposed frames which can
easily occur in retinal images, especially the pathological ones
of most interest.

The algorithm of Collorec and Coatrieux [26] is most
closely related to the present work. Indeed, this work over-
comes two “hard problems” described by Coatrieux et al. [12],
namely: 1) robust and accurate handling of branching and
crossover points and 2) improved handling of discontinuous
regions by relying on local contrast, and edge information (as
opposed to gray values), instead of a global intensity threshold.
It also overcomes their “looping” artifact by using an improved
stopping criterion. Some tracing accuracy improvement is also
gained by more accurate angular discretization, more filtering
across and along the vessels, and more careful handling of
the discrete image space. Computationally, our algorithm is

comparably attractive. The strict rules used by our algorithm
for validation and verification of initial seed points allows it to
reject many artifactual seed points, making up for the higher
complexity in the core tracing computations.

III. METHODS

Fig. 1 shows some sample images exhibiting typical varia-
tions in brightness, contrast, the presence of imaging artifacts,
and pathologies. Nevertheless, it can be assumed that vessels
have a lower reflectance compared to the local background.
Also, they have well-defined edges, and the intensity within
the vessels varies smoothly. Finally, the vessels are locally
continuous, and changes in direction between branching points
are smooth. It is expected that the vessels are not all connected
since the image in question could represent a partial view. Oc-
casionally, portions of vessels may appear hollow, somewhat
similar to stenoses in X-ray images [Fig. 2(d)] due to certain
pathological, blood flow, or imaging conditions. Finally, it is
assumed that the images are corrupted minimally by Gaussian
noise.

The tracing method is based on adaptive exploratory pro-
cessing of the image, directly at the image intensity level,
without preprocessing, avoiding image-wide pixel-processing
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operations such as filters, edge operators, morphological filters,
and segmentation. Each stage of the algorithm is designed
to identify and restrict the computations to only the most
relevant and promising locality of pixels. The computations
themselves are all performed in fixed-point arithmetic using
mostly local shift and add operations. The first step of the
algorithm explores the image along a grid of one-pixel-wide
lines, estimating the frame contrast and brightness levels,
and seeking out local gray-level minima [Fig. 2(a)]. Prior to
using any of these minima as a seed point for tracing, they
are tested for validity using a set of strict validation and
verification rules, described in Section III-E. The second step
of the algorithm is a sequence of exploratory searches initiated
at each of the validated seed points. Specific mechanisms are
used to pool the results of the many exploratory searches, and
to avoid repeated searches described further in Section III-
F. Mechanisms are also described to detect critical points
such as vessel crossovers, branch points, and end points (see
Section III-G).

A. Directional Matched Low-Pass Differentiator Templates

The core tracing algorithm is based on the use of a set
of two-dimensional (2-D) correlation kerpels that act as low-
pass differentiators [37] perpendicular to the direction of the
vessels, and low-pass averaging filters along the vessel. For
instance, a part of a blood vessel that is locally oriented along
the r axis [Fig. 3(a)] can be detected using the peak response
of the following correlation kernel:

Mz, 4) = g {6y — 2) — 26(y = 1) + 26y + 1)

k)} 8Y)

where ® represents a convolution operator in the y direction.
In this paper, a kernel of the above form with K = 6 was used.
For computational efficiency, the constant factor was dropped.
With this, the computation only involves fixed-point shift and
add operations. For convenience of exposition, the templates
in Fig. 3 are grouped as left and right templates. The left
templates find the edge location in the 90° counterclockwise
direction, and similarly right templates are tuned to the right
boundary. The thick arrow in Fig. 3 indicates the sense of the
templates. The location 5% at the base of the arrow indicates
the point on the vessel centerlme at which the template is
computed.

Vessel boundaries at arbitrary angles can be detected by ker-
nels that are obtained by rotating (1). An exact rotation would
yield fractional weights, and the computational advantages of
the above kernel would be lost. This motivated an exhaustive
search for kernels that approximate the ideally rotated template
in (1), using weights of 1 and 2, and meeting the constraint
that the sum of the squares of the weights are the same for
any angle. The latter constraint ensures that, when multiple
templates are correlated at a point on the boundary of a vessel,
the one that is closest to the direction of the blood vessel
also produces the highest response. This search yielded a set
of templates which for K = 6, had the angular quantization

K-1

+6(y+2)}®{2 8(z —

k=0

error, i.e., the angle between the gradient estimate computed
for the template, and the corresponding ideal direction (one of
16 possible) of no more than 1°. For the templates in Fig. 3,
the angles of rotation are discretized to 16 values, separated by
22.5°, and each template has the same sum of squared weights
value of 60. They can be computed using fixed-point addition
and shift operations alone, without multiplications.

The above design is neither unique nor optimal. In principle,
it is desirable to select the kernels so that they function as
matched filters [14]. Such an optimal design was avoided
in this work in favor of a suboptimal but computationally
advantageous design.

B. Application of the Templates to Recursive Tracing of Vessels

Starting from a point 5* and an initial orientation s* on a
vessel, the templates can be used to estimate the next point
on the vessel 7*t! and its orientation s**! in a recursive
manner, where the superscript k is the iteration number, with
k = 0 specifying the seed point [see Fig. 4(a)l. The procedure
for obtaining the seed points automatically is described in
Section INI-E. Let #* denote a unit vector along the blood
vessel at point 5*. Since the directions are quantized, it 1s
helpful to refer to directions by their indices. Specifically, if s*
is an index, assuming values from the set {0, 1, 2, 3, -- -, 15},
into the 16 quantized directions, then the unit vector @* can
be written as follows:

k T
= [Zg] = [005(27;; )sin<271rgk>] . 2

Denote the right and left templates in the direction s as T},
and T}, respectively. Let R(z, y, s) and L(z, y, s) denote the
correlations between the image data I(z, y), and the right and
left templates in direction s, respectively, i.e., the “template
responses,”

R(z,y, s) =

Z Z Iz +n,y+m)Th(n,m) Q)

Lz, y, s) = ZE I{z+n,y+m)Ti(n, m). &)

Given the current position 7*p* and the direction s*, the
right and left templates are correlated with the local image
data at pixels starting from p* along the two directions
perpendicular to the unit vector @, respectively. For the
hypothesized direction s*, the right and left edge locations
are estimated to be at the locations where R(z, y, s) and
L(z, y, s) are maximum. The search for the maximum is
limited to a distance M /2 in each direction, where M is the
maximum expected width of a blood vessel. A value of 26
pixels was used in our work based on measurements from
numerous images. For each given direction s*, the above
search produces two numbers. Rpax(s*) is the maximum
value of the template response, and dr(s®) is the distance
from the centerline at which the maximum response occurs.
Mathematically

Rmax(sk )

= o max L (R((E + dud), (9 - dul), <))

®)
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Fig. 3. Right and left templates at 0°, 22.5°, 45°, and 77.5°. The shaded region represents a hypothetical vessel oriented along the template. The thick
arrow shows the sense of the templates, and " k indicates the point on the vessel centerline at which the template is computed.

d R(Sk )

= argmax  {R((E +dub), (5f — dut), *)}. (6)

de{0,1,2,--,M/[2}

The corresponding quantities for the other direction are
defined similarly and are denoted Lmax(s¥), and dr(s*).
respectively. To track possible changes in the direction of the
vessel, the above procedure could be repeated with s* replaced
by 15 other directions. However, if the changes in direction
between crossover and branch points are known to be smooth,
then just the neighbor directions may be used. So, the tracing
algorithm computes the new direction s**! as shown in (7),
at the bottom of the page.

The inner max operation is aimed at handling branching and
crossover points. With this formulation, the tracing follows the

strongest edge at these points. With (7), one can estimate the
new position vector as

ﬁk+1 — I—)‘k + aﬁk+1 (8)

where a is a step size. Although intuitive, the above algorithm
has a drawback that results from the coarse angular dis-
cretization (22.5°). Small changes in direction, say 5°, can go
unaccounted for, resulting in “jaggy” looking estimates. This
problem can be overcome by exploiting the precise locations
of the estimated left and right boundaries. This information
is captured in the form of a “refinement vector,” denoted
G*+!, whose purpose is to adjust the location of the center
point 5**! based on the estimates dr(s**!, and dp(s**!),

k+1

T = argmax

{max{Rmax(s), Lmax(s)}} 0

s€{(s*—1)mod16, s*, (s*+1)mod16}
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Fig. 4. (a) The iterative tracing procedure. (b) Failure of (8) for closely situated vessels. (c) Special handling of branch points by simply suppressing

the refinement vector at such points, as illustrated in panel (d).

as shown below:

gre =[] L [l ) —da(stH)ast)
= ﬂ§+1 - 2 (dR(Sk+1)_dL(sk+1))u);+1 .

With the refinement vector, the modified recursion is given
by

= 4 P L bt (10)

These computations can be implemented efficiently by not-

ing that d € {0, 1,2,---, M/2} and s* € {0, 1, ---, 15}

are from small sets of integers. Look-up tables can be used to

precompute and store the trigonometric functions in (2), after

scaling by d, and rounding off to integers. This further avoids
the need for floating-point computations.

C. Stopping Criteria

The tracing is terminated if one or more of the following
conditions are satisfied.
1) The new point p*+! is outside the image field.
2) A previously detected vessel intersects the current one.
All the pixels connecting the points 7% and p*+! are
checked for this test, which is detailed in Section III-F.

3) The sum of the left and right template responses is below
a sensitivity threshold 7', i.e.,

Rinax(s¥7Y) 4 Linax(s*71) < T an

The threshold T is estimated adaptively for each image
frame based on the dynamic range of its grayscale values (see
Section ITI-H). The outputs of the templates depend on the
gray-level contrast of the image field, so for a fixed sensitivity
threshold 7, the stopping criterion in (3) terminates the tracing
algorithm earlier for low-contrast images than for high-contrast
ones. This may result in some undetected vessel segments in
dark images and extra false detection in bright images.

D. Modifications for Handling Jumps and Branches

If some vessels run close to each other [see Fig. 4(b)l,
specifically, if the furthest edge of one vessel is closer than
M/2 pixels from the center of the other vessel, the tracing
algorithm can “jump” from one vessel to the other if the other
vessel has a higher template response. Furthermore, at branch
points [illustrated in Fig. 4(c)], one of the edges is not parallel
to the other, so this may induce an unwanted deviation in the
tracing algorithm. The above two situations are handled with
minor modifications to the core tracing algorithm, as described
below.
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1) Jumps Between Vessels: These can be prevented by ter-
minating the search in (5) and (6) when the other vessel’s
edge is detected. W"xth reference to Fig. 4(b), if a sean:h
is initiated at point 5* in a direction perpendicular to @
then it encounters a peak response for the right template at
a distance of approximately “A,” and then a negative peak
response at a distance of approximately “B.” The latter peak
is approximately the same as the response of a left template
with the sign reversed. Now, the sensitivity threshold in (11)
is designed such that it is exceeded by the sum of the left and
right template responses whenever a valid vessel boundary is

.» detected [see (11)]. This motivates the following criterion for

terminating the search in (5) and (6). If m denotes a point along
the search line, where m < M/2, the search is terminated for
the right templates if

max

d=0,1,2, ,m{R((Pi + dus), (pz — du:’;), Sk)}

— R((pE + (m + 1)uf), (0} — (m + 1)uf), s*) > T.
(12)

The criterion for terminating the search in the other direction
is analogous.

2) Unwanted Deviations at Branching Points: Although
the algorithm for selection of the new direction s**! operates
correctly at branching points, the mechanism for selecting the
new point 75! does not. As illustrated in Fig. 4(c), the right
template is matched to a false boundary at the branching of
the vessel. In this case, the refinement vector ﬂ"“ introduces
significant error at branching points, so the next point pE+l
can be computed more accurately by simply suppressing the
refinement vector, and using (8) instead of (10) at branching
points [Fig. 4(d)]. To implement this switching between two
formulas, a criterion is needed to detect branching points.

At the branching points, while the output of the template
that is matched to the true boundary in the estimated direction
s¥*1 is high, the output of the template matched to the
false boundary is usually low, since the direction of the
branching side vessel is different from s*+! [see Fig. 4(c)].
This motivates the following test. A point is declared as a
branch/crossover if

IRmax(sk-H) - LmaX(skH)I
> lemax(sk-hl) + Lmax(3k+1)| (13)

where p is a fixed threshold. The absolute value of the above
ratio is used since the branching can occur on either side.
In our work, the threshold p is chosen as 1/3, ie., when
the response of the false boundary is half of the response
of the true boundary. The above test is only performed when
the estimated directions of the left and right boundaries are
different.

E. Automatic Selection of the Initial Points and Directions

This section presents an automatic two-step method based
on grid analysis for estimating the initial seed points and the
initial directions. The first step is similar to the procedure used
by Collorec and Coatrieux [26]. The second step represents an
improvement.

Step 1—Line Searches over a Coarse Grid: Ideally, if the
vessels in an image were all connected, the tracing algorithm
would need to be initiated at just one point. However, this
condition is not met in retinal angiograms. Furthermore, the
tracing algorithm described above is designed (for compu-
tational reasons) to follow the strongest edge whenever a
branch point is encountered, rather than performing a breadth-
first search on the vasculature. For these reasons, the tracing
algorithm is initiated at several points, and the traces are
combined. The seed points are identified by performing a
set of 2N line searches over the image, using a set of grid
lines as illustrated in Fig. 2(a). The gray-level values on each
line are low-pass filtered using a discrete approximation (0.25,
0.5, 0.25) to a one-dimensional (1-D) Gaussian kernel. This
kernel is computationally attractive, since it is composed only
of local fixed-point shift and add operations. Local intensity
minima are detected [indicated by dots in Fig. 2(a)] on this line
using a neighborhood size N,, using a 1-D sliding window.
Small values of N, are needed to detect thin vessels. However,
this leads to the detection of multiple local minima on thick
vessels. To prevent this, N, must be chosen to be equal or
higher than the widest expected vessel, i.e., M. In our work,
N, = M. With this, the number of detected local minima as
a function of the grid size N is plotted in Fig. 5(a). Clearly,
better schemes may be devised for setting the neighborhood
size, depending upon the application of interest. For instance,
N, may be adjusted upwards for sparse grids to improve the
detection of short vessels. From a computational standpoint,
Step 1 is extremely fast. Furthermore, it can be structured so
as to overlap with image input/output.

Step 2—Filtering the Results of Step 1: Some of the local
minima detected in Step 1 may correspond to noise and
must be rejected to avoid unnecessary tracing. The directional
templates provide a powerful mechanism for performing such
fillering and, additionally, provide estimates of initial direc-
tions for tracing. If a seed point 5° is on a locally straight
vessel segment with an unknown direction @°, note that it
should yield high template responses in a pair of oppositely
oriented directions of the form s° and (s° + 8)mod 16 in a
small neighborhood of 5. On the other hand, the template
responses are expected to be low in directions perpendicular
to the orientation of the vessel. These observations lead to the
following validation rules for selecting reliable seed points.

1) The outputs of the right templates in all 16 directions
must have two local maxima.

2) The directions between the local maxima computed in
1) must differ by 180°+£22.5°.

3) The outputs of the left templates in all 16 directions
must have two local maxima.

4) The directions between the local maximum computed
in 3) must differ by 180°+22.5°.

5) The directions between the local maxima computed in
1) and 3) should differ by +22.5°.

6) The sum of local maxima computed in 1) and 2) should
exceed the sensitivity threshold T'.

The above rules are not applied to all seed points. They are.
only applied selectively, as described in the next section. They
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Fig. 5. Tradeoff between computation and detection performance for 10 frames. (a) Number of grid lines N versus the detected local minima, (b) N
versus detected centerline pixels, (¢) N versus detected feature points, (d) N versus computational time, (¢) N versus performance measure P, and (f)

step size versus computational time for different N values.

are checked in the order indicated above and the verification
process is terminated if any one of the rules fail. The 22.5°
tolerance rule is needed to account for quantization effects and
small vessel curvatures. After the point is verified as a good
seed point, the initial pair of opposite directions s} and s are
selected based on the maximum template responses, where
9 is the direction corresponding to the highest response at
the first peak between the left and right templates, and s
is the direction corresponding to the highest response at the
second peak between the left and right templates. The tracing
algorithm is initiated twice, starting from point 5, once in
direction s, and once along s3.

Fig. 2(b) illustrates the effectiveness of the above rules in
detecting valid points on the vasculature, when implemented
on all the pixels in Fig. 2(a). Clearly, the procedure succeeds in

extracting the straight portions of all the vessels. However, for
branching points, the templates have high outputs in more than
two directions, so they do not satisfy the above rules, which
can be seen in Fig. 2(b). On close inspection, many of the
points that were apparently detected over the background were
found to actually correspond to minute vessels, possibly from
the choroid. The remaining points (and some of the misses over
vessels) are due to noise. Overall, it is obvious that the above
rules constitute an effective filtering mechanism. In order to
illustrate the impact of the false detections in Fig. 2(b) on
tracing performance, the algorithm was initiated at each of the
validated points in Fig. 2(b). It was found that the algorithm
would terminate rapidly for the false detections. The validated
points that resulted in more than 10 tracing iterations are
indicated in Fig. 2(c). The region highlighted by the rectangle
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Fig. 6. The detected feature points for the image in Fig. 1(a) for grid sizes (a) 10 and (b) 60, respectively.

[shown enlarged in Fig. 2(d)] deserves additional comment.
It shows a vessel that appears “hollow,” which can occur,
albeit rarely. Although many of the points on this segment
failed to satisfy the validation rules, if any other point on
the same vessel is validated, then the tracing algorithm is
able to handle this type of area and will continue to follow
either one of the darker edges. Another area where some
incorrect initial points are found is near the optic disk. The
change of illumination in this area looks like a vessel and the
templates validate and track these points. As long as the same
illumination characteristic is observed in all the images, this is
a negligible problem for image matching, because consistent
feature points are extracted in all the images.

F. Methods for Preventing Repetitious Tracing
and Handling Vessel Intersections

All the detected centerline pixels are stored in two data
structures. One is an integer array that has the same dimensions
as the processed image and is called the “centerline image.”
This array is initialized to zero before any tracing begins.
This operation can be carried out quickly, noting that only
the values that were set for the previous image frame need
to be reset for a new frame. As the tracing proceeds, the
traced centerline of the vessel are set to a nonzero value.
Specifically, as each new segment in the vasculature is tracked,
we increment a variable called the “segment number.” Before
the validation rules described in the previous section are
applied to one of the local intensity minima shown in Fig. 2(a),
the centerline image is checked to see if the corresponding
vessel has already been traced starting from another point.
Now, since small spatial errors of the order of a few pixels
may occur in the location of the centerline, the centerline
image is checked on the boundary of a small square (of size
5 x 5 pixels) centered at the proposed initial location for the
tracing. Since the vessels are continuous line segments, there
is no need to check all the points inside the square; only the
boundary pixels are sufficient. The centerline image is also
used to detect previously detected vessels during the tracing
process itself. As described earlier, the tracing algorithm only

searches over the current and adjacent directions. Accordingly,
three small line searches (2« pixels in length) are initiated
from the current point 5* one in each of these three directions
over the centerline image. If any of these searches encounters
a nonzero value in the centerline image, then an intersection
is inferred.

While the centerline image is an efficient data structure
for detecting intersections as noted above, it is inefficient for
higher level feature extraction. Therefore, a second compact
data structure, called the “centerline network,” consisting of
a linked list of segments, is used. Each segment is a linked
list of connected pixels representing the detected centerline
of a vessel segment. When a previously detected vessel is
intersected, the coordinate of the intersection point is searched
in the corresponding point lList of the centerline network, and
it is updated. Two details worth noting are: 1) when a vessel
is found to intersect with itself, the data structure is not split
and 2) whenever a tracked segment is shorter than a fixed
threshold L, (typically 10e), it is simply rejected.

G. Extraction of Branching and Crossover Points

The branching and crossover points can be detected and
characterized efficiently from the centerline network. Also of
interest for matching problems are the “signatures” of these_
points. The signature of a feature point is simply the set of
angles between the segments [1]. For each intersection point,
the corresponding segment numbers are noted. Then, lines are
drawn from the intersection point to points on the segments a
fixed curved distance along the segment (18 pixels long). The
slopes of these lines are used as estimates of the angles. If
multiple intersections are located close to each other, they are
combined and replaced by their centroid. The lines described
above are then drawn from this centroid point. Fig. 6 shows
all the feature points that are detected in Fig. 2(a). The angles
between the vectors are invariant under rotation, scaling, and
translation of the image. While the feature points can be used
for estimating the motion (rotation, scaling, translation) of
the eye between the frames of retinal images, the signature
of the feature points gives the correspondences between the
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feature point sets of the images. Pairing only the feature
points with similar angles between two images decreases the
computational time for motion estimation and increases the
reliability of the system [1].

H. Settings and Adaptive Parameter Estimation

The parameters for the tracing and initialization algorithms
are the grid size N, the neighborhood size N,, the sensitivity
threshold T, the step size «, the constant p in (13), the
maximum expected vessel width M window size for testing
if a seed point is on a previously detected vessel, and the
minimum expected vessel length L,. In Section III-E, we
showed how N, could be tied down to the maximum expected
vessel width. Similarly, the minimum expected vessel length
is closely related to the algorithm step size o. Indeed, it
makes sense to reject any vessel segments that are shorter
than a convenient fixed multiple of step sizes. Accordingly,
we have set L, to 10« in our work. This is also the minimum
number of tracing iterations for a trace to be accepted. This
parameter can be varied considerably without affecting the
results significantly.

Increasing the grid size N improves the probability of
detecting vessels at the expense of computation. Fig. 5(a)
shows the nearly linear relationship between the number of
detected local minima and the grid size. The graph in Fig. 5(b)
demonstrates improved detection of vessels, as measured by
the number of detected centerline pixels, as a function of the
grid size. The rapid increase for small values of N (less than
6) can be mostly attributed to the thick and long vessels.
The subsequent slower increase and leveling off is mostly
due to the secondary and tertiary vessels. Fig. 5(c). which
plots the number of feature points detected, denoted F', as
a function of grid size exhibits a corresponding increase.
The improved detection performance noted above entails in-
creased computation. Fig. 5(d) plots the computational time,
denoted Teomp, of the algorithm for the same image (not
including the time for reading/writing). For increasing N, the
number of the initial points that are checked for verification
increases and the new vessel segments are traced, hence the
computational time increases. A simple method to tradeoff
computation and feature detection performance is to consider
the ratio of F, and the computation time Tcomp. as an overall
performance measure. Fig. 5(¢) plots this ratio, denoted P,
as a function of the grid size. This graph exhibits a broad
peak between 10 and 30, indicating that for grid sizes in
this range, the cost-performance tradeoff is reasonable. For
the computer hardware available to us (150 MHz SGI Indy),
N was chosen as 10, which yields an average computation
time of about 200 ms. The above performance measure may
be refined/customized further. For instance, one may want
to consider the reliability of each feature point itself. Those
corresponding to primary vessels are more reliable compared
to the ones on the secondary and tertiary vessels. Furthermore,
the above measure is strongly influenced by image matching
problems. Finally, the computation time is machine-dependent.
Machine-independent measures of computational burden such
as worst-case complexity are not particularly useful since

the images vary greatly and the computation times vary
accordingly.

Another parameter is the step size o. If o is too large,
the centerline becomes jagged and the estimated next point
can easily occur outside the vessels, especially for the minute
vessels, since directions are quantized to only 16 values. In this
case, the tracing algorithm would terminate prematurely, and,
if the rest of the vessel is detected by a different initial point,
false feature points may be obtained. On the other hand, small
values of o result in more accurate tracing at the expense
of more computation. Fig. 5(f) plots the computational time
as a function of «. In our experience, the values of o = 3
for high-resolution (1024 x 1024 pixels) images and o = 2
for video-resolution (640 x 480 pixels) images represent
acceptable tradeoffs.

The threshold T" must be estimated for each new frame.
This parameter is used in (11) to define the stopping criterion
for the tracing, in (12) to prevent the tracing algorithm from
jumping to a nearby vessel, and in Step 6) of the procedure
for validation of initial points prior to invoking the tracing
algorithm. An examination of the template design (Fig. 3)
reveals that, neglecting quantization errors, the response of the
left/right templates to a single unit of difference in background
and foreground gray levels is 18. So, the minimum value of
T should be 36, corresponding to a contrast of just one gray
level. At the other extreme, T' must never exceed 36 times
the maximum gray-level value. An efficient estimation of T
may be made based on the grid analysis step, which performs
a sampling across the image. The local minima on the grid
lines are points with a high probability of being on vessels,
so the average gray-level value at the local minima is a good
estimate for the average gray-level intensity of the vessels
L,,. Complimentarily, the average gray level of the image
background, denoted B, , can be estimated from the remaining
points on the grid lines. The contrast in the image frame is
estimated as the absolute difference between the foreground
and background estimates. Accordingly, T' is set as follows:

T = 36(1 4 ¢|Lay — Bav|) 14

where ¢ is a scaling factor whose value lies between 0 and 1
and can be thought of as a percentage of the average contrast.
Low values of o makes the tracing more sensitive to noise
and quantization errors. High values of ¢ make it terminate
prematurely. This effect is illustrated in Fig. 7(a)-(d) in which
the tracing algorithm was initiated from the same starting point
for various values of 7. The length of the traced segment is
plotted in Fig. 12(e) [Author: There is no Fig. 12(¢) in this
paper. Please clarify and revise.—Ed.]. For reference, this
segment was also traced manually. The manually measured
length of the vessel was 251 pixels. Values of the sensitivity
parameter between 5%-55% give traced lengths close to 251
pixels, indicating the robustness of this method. The result of
running the tracing algorithm on the image in Fig. 2(a) using
a o value in this range (21%) is shown in Fig. 8(a)-(c).

IV. EXPERIMENTAL RESULTS
The images were captured using a TOPCON TRC-50IA fun-
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Fig. 7. [Ilustrating the impact of o for a sample image. (a) Manually traced result (251 pixels). (b)~(d) Automatic tracing result starting at the same location
at the bottom, and with o of 5%, 21%, and 55%, respectively. (¢) Sensitivity parameter versus detected length of a vessel segment.

dus camera using red-free illumination, and a Kodak Megaplus
1.4 CCD sensor attached to the top. The acquired images were
at a resolution of 1024 x 1024 using the Topcon Imagenet
H-1024 digital imaging software. The images were of fully
dilated healthy as well as pathological eyes. The patients were
allowed to move their eyes freely. The static high-resolution
images were captured regardless of visual quality to simulate
live imaging.

Fig. 8 presents the tracing results on one healthy eye un-
der various imaging conditions and settings (a)-(f), and six
pathological eyes (g)-(1). The latter is a subset of our much
larger collection. Specifically, panels (a)-(c) show the results
of setting the grid size N to 10, 20, and 60, respectively.
In these frames, the correct algorithm-generated traces are
presented as lines, the traces that were missed by the algorithm
are manually traced, and indicated as black lines, and those that
were algorithm-generated but clearly incorrect are presented as
dotted lines. Clearly, increasing N leads to improved detection

of the secondary and tertiary vasculature segments. It must be
noted that, even for the lower value of grid size, the main
vessels are detected successfully. Panels (d)-(1) show examples
of tracing on low-quality and pathologic frames. The algorithm
is able to adapt remarkably well to small amounts of defocus
and significant changes in illumination level. Fig. 6(a) and (b)
shows the increased number of feature points when the grid
size is increased from 10 to 60.

V. CONCLUSIONS

This work has resulted in refinement and successful adapta-
tion of exploratory tracing methods to live ophthalmic images.
These images differ from X-ray images in that they are
darker, have lower contrast in the region of most interest (the
fovea), have higher signal-to-noise ratio, and are affected by
different noise factors—frequent improper illumination, glare,
fadeout, overexposure, loss of focus, motion, and artifacts
arising from curvature, reflection, refraction, and dispersion.
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Fig. 8. Sample results on low- and high-quality frames. (a)-(c) Fig. 1(a) traced with grid sizes 10, 20, and 60, respectively, with other parameters the same.
The correct traces are shown as white lines, traces that were missed are manually traced in black, and incorrect traces are shown as dotted lines.

Our algorithm improves upon cited works in terms of speed,
automation, robustness, freedom from artifacts, and robust
analysis of branches and crossovers in the specific context
of ophthalmology. The design of our algorithm was driven
by computational considerations as much as by detection per-
formance. All computations can be implemented in fixed-point
arithmetic, and the templates was based on a search in discrete
space for computationally advantageous approximations to the
ideal values. To illustrate, we implemented the Sobel edge
detector on the images presented in Fig. 1 of this paper on the
same computer that was used to generate the timing results in
Fig. 5, using the same compiler settings. When just the square
of Sobel magnitude was computed, i.e., without the square

root operation, and without the trigonometric operations to
compute the edge angles, it required an average of 440 ms for
the 1024 x 1024 size images. Comparing this with the timing
results in Fig. 5(f) illustrates the computational efficiency of
the proposed exploratory algorithm relative to pixel-processing
methods. The experiments indicate that the parameters that do
need to be specified can all be specified approximately without
appreciable impact.

VI. DISCUSSION

The proposed algorithm is amenable to a variety of serial
and parallel implementations. For instance, a dual-processor
SGI workstation (Octane, with 180 MHz R10 K processors)
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implementation yielded an average time of 30 ms per video
frame by simply tiling the image into two blocks and pooling
the results. It is also possible to assign a separate processor
to each tracing thread, although this would involve the use of
the centerline image as a shared memory area. Furthermore,
the core tracing algorithm can be parallelized at finer levels.
For instance, one could compute the left and right template
responses in parallel and, additionally, compute template re-
sponses at multiple angles in parallel. Finally, the intratemplate
computations can themselves be parallelized on pipelined or
long-instruction word processors.

The algorithms presented here are being used to construct
a computer-assisted instrument for laser retinal surgery [1],
similar to the description given by Welch and his colleagues
[38]-[42]. Recently, we have published an algorithm for
real-time retinal tracking and location determination for video-
resolution images [1]. This algorithm is based on using the
point templates of Barrett et al. [39], [42] for small movements
at a fixed magnification, and a slower matching procedure (800
ms) to reestablish tracking whenever the point templates fail,
which occurs whenever low-quality frames are encountered,
whenever the magnification is adjusted, and whenever the
system is being started for the first time. Though effective, our
earlier method had a disadvantage relating to the procedure for
reestablishing tracking. It required extensive low-level pixel
processing. This prompted an investigation of better scaling
methods, leading to the exploratory methods reported here.
With the present formulation, in combination with the point
templates of Barrett et al., it is possible to perform all the
computations for the surgery system in an exploratory manner.
The exploratory approach is computationally more attractive
(250 ms versus 800 ms) and scales better with image size.
It also yields more compact signatures for the crossover and
branching points [1]. It must be noted that the tracing algorithm
is only invoked when the point templates [39]-[42] fail. When
this occurs, the present algorithm is constantly applied to new
frames, and a tracking lock is attempted until it succeeds. In
this context, it is not essential, although desirable, for the
tracing algorithm presented in this paper to operate at 30
frame/s. As noted earlier, this has been achieved for video-
resolution image streams.
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