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Abstract

Our goal is an automated 2d-image-pair registration algorithm capable of aligning images taken

of a wide variety of natural and man-made scenes as well as many medical images. The algorithm

should handle low overlap, substantial orientation and scale differences, large illumination variations,

and physical changes in the scene. An important component of this is the ability to automatically reject

pairs that have no overlap or have too many differences to be aligned well.

We propose a complete algorithm, including techniques for initialization, for estimating transfor-

mation parameters, and for automatically deciding if an estimate is correct. Keypoints extracted and

matched between images are used to generate initial similarity transform estimates, each accurate over

a small region. These initial estimates are rank-ordered and tested individually in succession. Each

estimate is refined using the Dual-Bootstrap ICP algorithm, driven by matching of multiscale features.

A three-part decision criteria, combining measurements of alignment accuracy, stability in the estimate,

and consistency in the constraints, determines whether the refined transformation estimate is accepted

as correct. Experimental results on a data set of 22 challenging image pairs show that the algorithm

effectively aligns 19 of the 22 pairs and rejects 99.8% of the misalignments that occur when all possible

pairs are tried. The algorithm substantially out-performs algorithms based on keypoint matching alone.

Index terms: Image registration, feature extraction, iterative closest point, radial lens distortion,

decision criteria, keypoint

I. I NTRODUCTION

This paper addresses the problem of developing an automated image-pair registration algorithm

that can work on a wide variety of image types, scenes, and illumination conditions. Much of this

variety is captured in a data set of 22 image pairs we have gathered, some of which are shown in

Figure 1.1 The set includes image pairs taken of indoor and outdoor scenes, in natural and man-

made environments, at different times of day, during different seasons of the year, and using

different imaging modalities. It includes image pairs with low overlap (e.g. 2%), substantial

differences in orientation (90 degrees), and large changes in scale (up to a factor of 6.4). A

general-purpose registration algorithm should be able to align each of these image pairs with

high accuracy. Moreover, such an algorithm should be able to indicate that two imagescannot

be aligned either when the images truly do not overlap or when there is insufficient information

1Both the data set and our software are available athttp://www.vision.cs.rpi.edu/gdbicp/
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to determine an accurate, reliable transformation between images. Such a registration algorithm

will have numerous applications ranging from mosaic construction to change detection and

visualization.

Three primary technical challenges must be addressed to solve this problem: initialization,

estimation, and decision.

• While automatic initialization is not a significant problem for aligning images in a video

sequence or for multimodal registration of images taken from roughly pre-aligned sensors,

it is a major concern for more general-purpose registration.

• In combination with initialization, the estimation process must tolerate position, scale, orien-

tation and illumination differences. Moreover, estimation must accommodate the possibility

that there is no relationship between the intensities for a large fraction of the pixels in the

two images. For example, in the Summer-Winter pair from Figure 1, snow on the roofs in

winter produces homogeneous intensity regions, whereas these roofs appear as dark, textured

regions in the summer image (Figure 4). Because of this, an effective estimation technique

should automatically and adaptively exploit what is consistent between the images.

• Decision criteria are required not only to choose among different estimates obtained from

different starting conditions, but also to decide when the images may not be aligned at all.

The need for effective decision criteria is particularly acute when handling low overlap and

large changes in orientation, illumination and scale due to the extremely large search space

of initial estimates.

A. Related Techniques in Registration

The literature on image registration is large; see [6], [25], [54] for reviews. We focus our

attention here on four classes of methods that appear most appropriate for the general-purpose

registration problem being addressed.

1) Feature-Based Methods and ICP:Our first class of prior techniques is feature-based

methods and the Iterative Closest Point (ICP) algorithm [5], [12], [13]. Starting from an initial

estimate, the ICP algorithm iteratively (a) maps points (features) from the moving image to the

fixed image, (b) finds the closest fixed image point for each mapped point, and (c) re-estimates

the transformation based on these temporary correspondences. In registration of range data, the

sensor data points (together with estimated normals) are the features. In alignment of intensity
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images, feature extraction is applied to obtain the points matched in ICP [11], [22]. There are

two common problems with feature-based methods and ICP: (1) ICP has a narrow domain of

convergence and therefore must be initialized relatively accurately; (2) feature extraction can

be unreliable and overly sensitive to the choice of parameters and the image content. (We

will address both issues.) Finally, several papers [14], [21], [32] have proposed Expectation

Maximization (EM) algorithms where multiple correspondences per feature are simultaneously

considered. While this approach improves the domain of convergence of ICP in many cases,

it has not been shown to handle the low overlap and high outlier fractions that occur in our

challenging data set. We discuss this further in Section VII.

2) Keypoint Indexing Methods:While ICP correspondences are based on geometric distances,

keypoint correspondences are based on appearance similarity measures. Keypoint methods have

received growing attention because of their demonstrated ability to tolerate low image overlap

and image scale changes. These methods start with keypoint detection and localization followed

by computation of the descriptor that summarizes the image in a region around the keypoint.

Existing extraction algorithms are based on approaches ranging from the Laplacian-of-Gaussian

operator [31], information theory [28], Harris corners [36], and intensity region stability measures

[34]. A detailed comparison can be found in [38]. Region descriptors are based on steerable filters

[19], moment invariants [20], shape contexts [3], image gradients [31] and Haar wavelets [8].

They are usually invariant to similarity or affine transformations of the image, as well as linear

changes in intensity. A comparison of descriptors can be found in [37].

Keypoint matching has been applied to fundamental matrix estimation [34], multiview match-

ing [43], [52], registration [7], and recognition [16], [17]. Often these techniques use minimal-

subset random-sampling methods [7], [34]. (In essence, this combines our initialization and

estimation steps.) Statistical tests of randomness based on the number of overall and consistent

keypoint matches are then used to decide if the transformation is correct [7] (the decision criteria).

While this approach has all the steps needed for a general-purpose registration system, it has

important limitations for the types of image pairs considered in this paper. Most importantly,

experiments on our data set show that keypoint indexing and matching methods only produce

a small number of correct matches, occasionally none and sometimes fewer than 10 out of the

top 50 matches. Finding an accurate estimate in this case is either impossible, or requires an

expensive, combinatorial search in candidate match sets. It is possible that more sophisticated
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keypoint detection, description and matching methods will make this overall approach viable for

such challenging image pairs, but this is not the direction taken in this paper.

3) Mutual Information: The third class of methods is based on mutual information (MI)

[33], [53]. MI registration is primarily designed for multimodal alignment, and has been used

extensively in medical imaging applications [41], but also in other areas as well [18]. For the

current problem it is less useful than it might first appear. First, algorithms based on MI [18],

[40] are only estimation techniques and include neither initialization nor decision techniques.

The former is usually not a problem in medical applications, and the latter is often left to human

judgment. Moreover, MI minimization procedures are quite sensitive to local minima, a crucial

concern when aligning low-overlap image pairs.

4) Direct Methods:A fourth class of techniques involves the direct minimization of intensity

differences between images [1]. These methods work by using intensity differences and image

gradients to compute an update to the estimate of the aligning transformation and then applying

this update to warp one image on top of the other. Multiresolution techniques are used to accom-

modate larger initial misalignments [4]. The approach has been extended to handle multisensor

data by computing and normalizing derivatives in four directions as the “intensity” at each pixel

[27]. These techniques require good initialization, although coarse searches of the translation-

only parameter space have sometimes proven effective [42]. Moreover, direct methods have

not yet been demonstrated on registration problems involving substantial scale and orientation

differences between images. Finally, no decision criteria are associated with these methods.

B. Approach

We propose an end-to-end registration algorithm — actually a system of algorithms — for

aligning pairs of images using parametric global transformation models, building heavily on

existing techniques. We use our data set both to carefully evaluate the main components of our

algorithm and to demonstrate its overall effectiveness. The primary novelties of our work are

in the construction of the overall algorithm, the design and interrelationship of the components,

and the success of the system and the components. As an illustration of this, the alignment

process is driven by image features extracted using auto-correlation matrices [44], which have

been widely used in Harris corner detectors and its variants [2], [23], [36]. Our implementation

produces edge-like as well as corner-like features distributed throughout the images, even in

DRAFT



6

extremely low-contrast regions. By stressing dense coverage of features in images we ensure that

features will nearly always be available, trusting the robustness of the matching and estimation

algorithms, as well as the decision criteria to avoid the effects of inconsistencies between images.

Thus, the novelty is in tailoring feature extraction for general-purpose registration rather than

feature extraction per se.

As mentioned earlier, the three primary components of the system are the initialization algo-

rithm, the estimation technique, and the decision criteria:

• The initialization method uses extraction and matching of keypoints [31]. But unlike current

techniques it does not attempt to combine matches in any way. Instead, each match is

used to generate an initial similarity transformation that is accurate only in a small region

surrounding the matched keypoints from each image. There are two reasons for this. First,

as suggested above, for challenging image pairs a relatively small fraction of keypoint

matches is correct — too small for effective use of minimal-subset random sampling search

techniques. Second, for the keypoint matches that are correct, our growth-and-refinement

based estimation procedure usually aligns the images accurately. Both reasons will be

illustrated experimentally.

• The estimation technique starts with the initial local regions and associated transformation

estimates, treating each one individually and in succession. The goal for each region and

estimate is to expand the region to cover the entire overlap between images while refining the

estimate each time the region changes. This can be thought of as keeping the estimate close

to the optimum as the problem grows in complexity. At the same time, as more information

is incorporated, it may be possible to switch to a higher-order transformation model that

more accurately describes the mapping of larger image regions. These intuitions are realized

by generalizing the Dual-Bootstrap ICP algorithm, which we proposed for retinal image

registration [48]. Several generalizations are needed to make this work. The most important

is the use of generic features, as discussed above, in place of detected blood vessels to drive

registration. Other enhanced techniques include bidirectional, across-scale matching between

images, region growth in both images, use of a more general model selection technique,

and an estimation technique that accounts for variations in feature location uncertainty. It is

interesting to note that these generalizations allow the new algorithm to handle some retinal

image pairs that the original algorithm could not.
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• The decision technique determines if an estimate generated by the Dual-Bootstrap algorithm

is indeed a correct alignment of the two images. The technique combines novel decision

criteria that measure accuracy, consistency and stability in the alignment.

The overall procedure takes an ordered sequence of initial estimates (generated from keypoint

matching) and applies Dual-Bootstrap ICP to each in succession. Following the convergence

of each Dual-Bootstrap estimate the decision criteria are applied. If the estimate passes these

tests, it is accepted as correct and the two images are considered registered. Otherwise, the

process continues to the next initial keypoint estimate. It stops with a failure if none succeed.

The complete algorithm will be referred to as the Generalized Dual-Bootstrap ICP — GDB-ICP

for short.

The remainder of this paper describes the details of GDB-ICP and then evaluates it on our data

set of challenging image pairs (Figure 1). The experimental analysis demonstrates the overall

performance of the algorithm and explores the significance of many of the individual components

and design decisions. Importantly, this includes testing not only on the image pairs that overlap

and therefore should be registered, but also on all possible image pairs, including those with no

overlap. The paper concludes with a discussion of the strengths and limitations of GDB-ICP,

and its relationship to other techniques.

II. I NITIALIZATION

Our initialization method is based on Lowe’s multiscale keypoint detector and SIFT descriptor

[31]. This has proven to be the most effective in the experimental evaluation of [37]. We have

used both our own implementation and the one used in the above evaluation with approximately

equal success. We have also used affine-invariant multiscale Harris corners [36], and again the

differences in results were minor. The results reported here used the implementation from [37].

Here is a summary of the initialization method. Each Lowe keypoint is a local maximum

of the magnitude of the Laplacian-of-Gaussian operator in both spatial and scale dimensions.

A neighborhood is established at each keypoint, with size determined by the keypoint scale

and orientation determined by the local gradient direction. The intensity gradient vectors within

this neighborhood are collected in histograms to form a 128-component SIFT descriptor vector.

All SIFT vectors are stored in a spatial data structure, one for each image. Keypoint matching

between images occurs by taking the keypoints from one image and using their descriptors
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White Tower Grand Canyon 1

Dashpoint (2% overlap) Extreme Zoom (factor of 6.4)

Downtown winter day, summer day,

summer night, respectively. Capital Region

Brugge Tower

Boston Library

Melanoma

Brain PD-T1

Brugge Square

Brussels

Retina

Grand Canyon 2

Fig. 1

SOME IMAGES FROM OUR22-IMAGE PAIR DATASET. THE THREE “D OWNTOWN” IMAGES PRODUCE THREE OF OUR TEST

PAIRS.
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(a) initialization (b) 3rd iteration (c) 6th iteration (d) 9th iteration

Fig. 2

EXAMPLE STEPS OF THEDUAL -BOOTSTRAP GROWTH AND REFINEMENT PROCESS ON THEDAY-NIGHT SUMMER PAIR. THE

CHECKERBOARD IMAGES ABOVE SHOW THE ALIGNMENT RESULTS AND BOOTSTRAP REGION FOR ITERATIONS0, 3, 6AND

9. THE YELLOW RECTANGLE OUTLINES THE BOOTSTRAP REGION IN ONE IMAGE. WITHIN THIS REGION, WHERE THE

COMPUTATION IS CONCENTRATED, THE ALIGNMENT IS GENERALLY ACCURATE. OUTSIDE THE REGION, ESPECIALLY FOR

THE SMALL REGIONS EARLY IN THE COMPUTATION, THE ALIGNMENT TENDS TO BE INACCURATE. AS THE BOOTSTRAP

REGION EXPANDS, MORE AND MORE OF THE IMAGES ARE ACCURATELY ALIGNED. THE FINAL ALIGNMENT IS SHOWN IN

FIGURE 10.

to index into the data structure for the other image. The descriptor distance, measured as the

Euclidean distance between vectors, is computed for each candidate match. The two closest

matches for each descriptor are found and the ratio of the distances to the closest and second

closest is calculated. Lowe establishes a upper bound threshold on this ratio of 0.8, and considers

only matches below this threshold. Instead, we sort the matches by the ratio and test the top

N in order, stopping when GDB-ICP produces an estimate that the decision criteria accept or

when all N matches have been tested unsuccessfully. We have foundN = 50 to be a good,

conservative choice. The initial similarity transformation is established from the positions of the

two keypoints, the orientations of their dominant intensity gradients, and their scales (Figure 3).

The initial bootstrap region is a square centered at each keypoint location, with half width

30 + 3si, wheresi is the scale of theith keypoint out of all detected ones in the image. This
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Fig. 3

INITIAL KEYPOINT MATCH AND SIDE -BY-SIDE ALIGNMENT FOR A SUMMER-WINTER PAIR. THE IMAGE REGION ON THE

RIGHT HAS BEEN SCALED BY A FACTOR OF2.25,AND THERE ARE SUBSTANTIAL ILLUMINATION , BLURRING, AND

PHYSICAL CHANGES(SNOW) BETWEEN THE REGIONS.

width setting ensures that there are enough constraints for Dual-Bootstrap to start successfully for

keypoints of various scales. One initial region is generated on each of the two images, centered

at the keypoint location. Together with the initial transformation, the initial regions are provided

as input to the Dual-Bootstrap.

One important consideration is why keypoint descriptors designed only for invariance to linear

changes in intensity should be useful in multimodal image registration. Indeed, as we will show

experimentally, keypoint matching is the least successful component of our algorithm. On the

other hand, our algorithm relies on finding only one correct keypoint match, and in generating

this match, the descriptors do not have to match exactly. Instead they must only be distinct from

other matches. Furthermore,local intensity differences between analogous keypoints in different

modalities are sometimes well-approximated by linear transformations. These two observations

explain why matching of Lowe keypoints successfully generates at least a few correct matches

on a variety of multimodal pairs.

III. F EATURE EXTRACTION

The Dual-Bootstrap procedure is feature-driven for two reasons. First, matching image features

provides direct measurement of the geometric alignment error. This is needed to compute the

statistics that drive the growth, model selection and decision processes. The second reason is

motivated by the changes seen between images that must be aligned. Much of the image texture
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Fig. 4

EXAMPLES OF SUBSTANTIAL VARIATIONS BETWEEN IMAGE REGIONS DUE TO ILLUMINATION DIFFERENCES, SCALE

DIFFERENCES, AND PHYSICAL CHANGES (SNOW).

and details may change between images — e.g. snow covering rooftops, leaves missing, textured

regions falling into deep shadows — but structural outlines usually remain unchanged (Figure 4).

These outlines, large or small, can be captured by properly-extracted features.

As discussed in the introduction, the primary consideration in designing the feature extraction

method is not obtaining a complete or a perceptually-significant set of features. It is solely to

extract features useful to drive the alignment process. Because of this, our goal is a feature-

extraction method that (a) does not depend on thresholds or parameters that must be tuned to

individual image content, (b) produces repeatable features, and (c) distributes features throughout

the image rather than concentrating them in the image regions of highest contrast.

Two different types of features are extracted — corner points and face points. Corner points

provide two constraints on registration, whereas face points, because of tangential position

ambiguity, provide only one. On the other hand, face points are more densely distributed. We

will evaluate the contribution of each feature type to the registration process in the experimental

section. Both corners and face points are extracted in scale-space with scale increasing in half-

octave steps (e.g. scales1,
√

2, 2, 2
√

2, . . .), with no combination across scales. Features at all

scales are used simultaneously during registration. The following details of the feature-extraction

algorithm are presented for a single scale.

We use a single response measure for both feature types. At each pixel locationx at scale
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(a) Initial classification (b) After adaptive pruning

(c) Matchable set (d) Driving set

Fig. 5

INTERMEDIATE RESULTS OF THE FEATURE EXTRACTION PROCESS: (A) INITIAL CORNERS (SHOWN WITH CIRCLES) AND

FACE POINTS(SHOWN WITH LINE SEGMENTS ALONG THE EIGENVECTOR CORRESPONDING TO THE LARGER EIGENVALUE)

AFTER APPLYING THE THRESHOLDtm (ONLY ONE OF EVERY THREE IS SHOWN IN THIS DISPLAY BECAUSE THEY ARE SO

DENSE), (B) CORNERS AND FACE POINTS AFTER ADAPTIVE LOCAL PRUNING, (C) “ MATCHABLE ” CORNERS AND FACE

POINTS, AND (D) “ DRIVING” CORNERS AND FACE POINTS.

σ, the intensity gradient,∇I(x), is computed. A weighted neighborhood outer product (auto-

correlation) matrix is then computed,

M(x) =
∑

y∈N (x)

w(x− y) (∇I(y))(∇I(y))>, (1)

wherew is a Gaussian weight function with standard deviationσ and the neighborhood size is ap-

proximately3σ. Next, the eigen-decomposition is computed:M(x) =
∑

i=1,2 λi(x)Γi(x)Γi(x)>,

with λ1(x) ≤ λ2(x). Potentialcorners are at pixels whereλ1(x)/λ2(x) > ta. This criterion

is similar to the Harris corner detector [23]. Potentialface pointsare at pixels for which

λ1(x)/λ2(x) ≤ ta. Decision valueta has been experimentally set to0.1; although the choice of

values is not crucial. A strength is assigned to each point:m(x) = trace(M(x)).

The next step is designed to make the final selection of feature points adaptive to local image

contrast. First, a very low threshold,tm = 1, is applied to the strength to eliminate points that

are obviously noise. The result is illustrated in Figure 5(a). The next step, local pruning, starts

by computing the medianµm and median absolute deviation (MAD) [49]σm of the strength
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valuesm(x) in a coarse set of overlapping neighborhoods (30×30 pixels) throughout the image.

Then, pixels withm(x) < µm + 0.5σm are eliminated from further consideration. As the final

preliminary step, non-maximum suppression is applied at each point — in 2D for potential corner

points and in 1D, along direction of the eigenvectorΓ2, for face points — and surviving point

locations are interpolated to subpixel accuracy. Figure 5(b) shows an example result.

The final steps are to extract the actual features, generating corners and face points inde-

pendently. Points surviving the previous step are sorted bym(x) values. The highest strength

point is labelled as a feature. Remaining points within a small neighborhood are eliminated. This

continues until a maximum number of features — determined from the size of the images — is

extracted or the list is exhausted. This produces a set of features which we call thematchable

features(Figure 5(c)). The procedure is repeated starting from the noise thresholding step with the

elimination neighborhood doubled in size, half the allowed number of features, and a threshold

requiringm(x) > 2tm. This produces a set ofdriving features(Figure 5(d)). As will be explained

later, driving features are transformed and matched against matchable features, similar to [46].

Since driving features must pass stricter criteria than matchable features, it is less likely that a

driving feature in one image will be missed as a matchable feature in the other due to random

effects.

An example of extracted driving and matchable feature sets at different scales is shown in

Figure 6. Features are spread throughout the image and summarize the local image structure:

a corner is placed in regions containing substantial intensity variations in all directions; a face

point occurs where the region contains variation in one direction.

IV. GDB-ICP ESTIMATION

The estimation step of the Generalized Dual-Bootstrap ICP (GDB-ICP) algorithm starts with

an initial similarity transformation generated from keypoint matching, together with the initial

bootstrap region surrounding the keypoint location in each image. The algorithm iterates steps

of (1) refining the current transformation inside the current bootstrap regionR, (2) applying

model selection to determine if a more sophisticated model may be used, and (3) expanding the

region, growing inversely proportional to the uncertainty of the mapping on the region boundary

(Figure 2). The entire algorithm is outlined in Figure 7.
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(a) Winter (driving) (b) Summer (matchable) (c) Summer (driving) (d) Winter (matchable)

Fig. 6

EXAMPLE OF “ MATCHABLE ” AND “ DRIVING” FEATURES AND BIDIRECTIONAL MATCHING. IN MATCHING , “ DRIVING”

FEATURES FROM THE(CROPPED) WINTER IMAGE (A) ARE MAPPED ONTO THE SUMMER IMAGE AND MATCHED AGAINST

THE “ MATCHABLE ” FEATURES(B). SYMMETRICALLY , “ DRIVING” FEATURES FROM THE SUMMER IMAGE(C) ARE MAPPED

ONTO THE WINTER IMAGE AND MATCHED AGAINST THE “ MATCHABLE ” FEATURES(D). ALTHOUGH NOT ILLUSTRATED IN

THIS FIGURE, MATCHING MAY OCCUR BETWEEN FEATURES AT DIFFERENT SCALE-SPACE SCALES.

A. Notation

The two images areIp and Iq. The matchable corner and face points arePc = {pc} and

Pf = {pf} from Ip andQc = {qc} andQf = {qf} from Iq. Driving feature sets are subsets of

Pc, Pf , Qc andQf . Points from all scales are combined to form these sets. Abusing notation,p

andq represent both the feature and its location. Each feature has associated with it the scale,

s, at which it was detected, and each face point has a normal direction,η.

The forward transformation of point locationx from Ip onto Iq is T(x; θpq), whereθpq is

the parameter vector to be estimated. An estimate isθ̂
pq

, and its covariance matrix iŝΣθpq .

The backwardtransformation fromIq onto Ip is T(x; θqp), with an estimatêθ
qp

and covariance

estimateΣ̂θqp . Finally, the regions over which the transformation is being estimated are called

the “bootstrap” regions, and are denoted byRp on imageIp andRq on imageIq. Each is defined

as an axis-aligned rectangular box on its own image.

B. Matching Within the Bootstrap Region

The transformation is refined within current bootstrap regionsRp andRq, ignoring everything

else in the two images. Recall that in standard ICP the current transformation is used to
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1) Extract keypoints and features from imagesIp andIq (Sec. II and III).

2) Match keypoints fromIp to Iq and rank-order the matches (Sec. II).

3) Do

a) Choose next keypoint match and generate the initial transformations and bootstrap regions (Sec. II).

b) Repeat

i) Use the current model and parameter estimatesθ̂
pq

and θ̂
qp

to generate the forward and backward

match setsCpq
c , Cpq

f , Cqp
c andCqp

f (Sec. IV-B).

ii) Use the match sets to re-estimate the forward and backward transformation parameter estimates,

θ̂
pq

and θ̂
qp

, and their covariance matrices,Σ̂θpq andΣ̂θqp , for the current model and remaining

higher order models (Sec. IV-C).

iii) Use the estimates and covariance matrices to select the model for the next iteration (Sec. IV-D).

iv) Grow the bootstrap regions in each image separately using the selected model, parameter estimates,

and covariance matrices (Sec. IV-E).

Until region growth, model selection and parameter estimation have converged.

c) Apply the decision criteria using the final model, parameter estimates, covariance matrices, and face

correspondence sets. If all pass, accept parameter estimatesθ̂
pq

and θ̂
qp

and terminate with success

(Sec. V).

4) While fewer thanN keypoint matches have been tried.

5) Terminate with failure.

Fig. 7

OUTLINE OF THE GENERALIZED DUAL -BOOTSTRAPALGORITHM

generate a new set of correspondences, in turn these correspondences are used to generate a

new transformation, and this process iterates. By contrast GDB-ICP proceeds to model selection

and region growing before selecting a new set of matches.

GDB-ICP uses bi-directional matching. This provides more constraints and helps to produce

more numerically-stable estimates, especially for small bootstrap regions. A driving featurep is

mapped fromIp to Iq, producingp′ = T(p; θ̂
pq

). The three closest matchable features (of the

same type) top′ are found inIq, and the best matching feature,q, is chosen from among these

three based on a similarity measure described below. The correspondence pair(p,q) is added to

match setsCpq
c (corners) orCpq

f (faces). Reversing order, the pair(q,p) is also added to eitherCqp
c
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or Cqp
f . The same procedure is used in the opposite direction to generate correspondences between

driving features fromIq and matchable features fromIp. Once these matches are generated, the

forward and backward transformation estimatesθ̂
pq

and θ̂
qp

are calculated. Since these use the

same set of constraints, just with the feature roles reversed, the two transformation estimates are

close to being inverses of each other (typical root mean square error of 0.1 pixels or less). The

remainder of the discussion focuses on the calculation ofθ̂
pq

usingCpq
c andCpq

f .

A similarity measure is used both in choosing between matches for a feature and in weighting

the chosen match during estimation. For corners it depends only on the feature scales, but for

face points it depends on orientations as well. For a feature pointp, let sp′ be the feature scale

after the transformation is applied. For a face point, letηp′ be the transformed normal direction.

The similarity measures for a prospective match withq, with scalesq and (for a face point)

normalηq, are

wc = min(sp′/sq, sq/sp′) and wf = min(sp′/sq, sq/sp′) · |η>
p′ηq|

for corners and face points, respectively. This biases the selection toward features at similar

(mapped) scales and orientations, and allows for contrast reversals in face point matches as well.

C. Estimation

Estimation is applied to the current model and, as the basis for model section (Sec. IV-D), to

higher-order models under consideration. This section describes estimation for a single model.

Before defining the transformation estimate objective function, we need to define the error

distances. For corner points these are Euclidean distances, whereas for face point these are

normal distances:

dc(p,q; θpq) = ‖T(p; θpq)− q‖/sq and df (p,q; θpq) = |(T(p; θpq)− q)>ηq|/sq.

In each case, the distance is normalized by the scale at which the feature is detected, reflecting

the fact that feature location uncertainty increases with increasing scale. This makes distances

of features at different scales approximately comparable.

Combining the foregoing, the objective function for estimating transformation parametersθpq

from a fixed set of correspondences is

E(θpq; Cpq
c , Cpq

f ) =
∑

(pi,qi)∈Cpq
c

wc;iρ(dc(pi,qi; θ
pq)/σc) +

∑
(pi,qi)∈Cpq

f

wf ;iρ(df (pi,qi; θ
pq)/σf ) (2)
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whereρ(·) is the Beaton-Tukey [26], [35], [49] robust loss function:

ρ(u) =


a2

6
[1− (1− (u

a
)2)3], |u| ≤ a

a2

6
, |u| > a.

(3)

Following standard usage, the constanta is set to4, which means that normalized alignment

error distances beyond4σ have a fixed cost. The parametersσc andσf are the robust alignment

error scales (standard deviations) for the normalized distances of corners and faces.

Objective function (2) is minimized using the Iteratively-Reweighted Least-Squares (IRLS)

technique from the robust statistics literature [35], [49], which alternates computation of (a) the

distance-based weightwd,i for each correspondence,i, based on fixed transformation parameters

with (b) weighted least-squares re-estimation of the parameters from

F (θpq; Cpq
c , Cpq

f ) =
∑

(pi,qi)∈Cpq
c

wd,iwc,id
2
c(pi,qi; θ

pq) +
∑

(pi,qi)∈Cpq
f

wd,iwf,id
2
f (pi,qi; θ

pq). (4)

The distance-based robust weight factor for corners iswd,i = w(dc(pi,qi; θ
pq)/σc)/σ

2
c , where

w(·), derived from the Beaton-Tukey robust loss function, is

w(u) =

1− (u
a
)2, |u| ≤ a

0, |u| > a.

An analogous computation produces the weights for face points. Normalization factors1/σ2
c (for

corners) and1/σ2
f (for face points) make corners and face points comparable.

The robust standard deviation,σc, for corner matches is recomputed once (per correspondence

set and Dual-Bootstrap iteration) from the weights and current transformation estimate as

(σc)
2 =

∑
(pi,qi)∈Cpq

f

wd,iwc,id
2
c(pi,qi; θ̂

pq
) /

∑
(pi,qi)∈Cpq

c

wd,iwc,i,

with a similar computation for face matches. At the start of the Dual-Bootstrap procedure for a

given initial transformation, the MUSE algorithm [39] is used to estimateσc and σf from the

first set of matches, since weights are unavailable.

Finally, the computation of the weighted least-squares estimates from (4) and the associated

covariance matrix of the parameter estimates, which is needed for the region growth and the

decision criteria, use standard techniques. In particular, for the transformation models that are

unconstrained and linear in their parameters,θ̂ is obtained in closed-form using linear weighted
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least-squares. The covariance matrix,Σ̂θpq , of the estimate is the inverse of the Hessian of (4).

Usually this must be multiplied by a noise variance term, but this is already built into the distance-

based robust weightswd,i. For constrained or non-linear models, such as the planar homography

or planar homography plus radial-lens distortion terms, Levenberg-Marquardt is used, with the

pseudo-inverse of the Hessian giving the covariance matrix,Σ̂θpq (see [24, Ch. 4]).

D. Model Hierarchy and Model Selection

The goal of model selection is to select the model from a set (a hierarchy) of transformation

models that best describes the alignment in the current bootstrap region. As the region expands,

model selection is applied to choose between the model used for the previous bootstrap region,

and the remaining, high-order models. Model selection must be done carefully. Switching to

a higher-order model too early, especially when the region is small and there are insufficient

constraints, may lead to overfittings and distortions in the estimate. Switching too late causes

an increase in mapping errors and results in an increase in mismatches. In either case, incorrect

model selection may drive the estimate into a local minimum representing an incorrect alignment.

Two different model hierarchies are used in GDB-ICP. One, used for retinal images, is a

hierarchy moving from similarity to a reduced quadratic to a quadratic model (see [48] for

details). The second, used for natural images, is a hierarchy of similarity, affine, homography,

and homography plus radial lens distortion (HRD). The HRD model is defined as

T(p; θ) = D(TH(D(p; kp);h); kq)

whereθ> = (h>, kp, kq), TH(x;h) is the usual planar homography (h is a 9-component vector

formed from the3 × 3 homography matrix), andD(x; k) = (1 + k‖x − x0‖2)x is the radial

distortion function, given image centerx0, assumed to be the center of the pixel array. This model

is important for accurate alignment of digital photographs taken with off-the-shelf cameras.

Model selection techniques have been studied extensively in the literature[9], [10], [29], [50].

In our earlier work [48] we used a Bayesian technique derived in [9] that depends on computing

the determinant of the parameter-estimate covariance matrix,Σ̂θpq . For homographies this is

problematic becausêΣθpq is not full rank. Rather than developing an appropriate projection

onto a full-rank covariance, we have replaced the Bayesian criteria with a modified version of

Akaike Information Criteria (AIC), derived from the Kullback-Leibler measure, and found it
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to be quite effective [10, Ch. 2]. Using our robust objective function (2) and taking advantage

of having transformation estimates and match sets available in both directions, a second-order

Akaike Information Criteria may be written as

I =− 2
[
| Cpq

c | log(σpq
c )+ | Cpq

f | log(σpq
f ) + E(θ̂

pq
; Cpq

c , Cpq
f )

]
− 2

[
| Cqp

c | log(σqp
c )+ | Cqp

f | log(σqp
f ) + E(θ̂

qp
; Cqp

c , Cqp
f )

]
+ 2nl/(n− l − 1),

(5)

wherel is the degrees of freedom in the current model,n = 2 | Cpq
c | +2 | Cqp

c | + | Cpq
f | + | Cqp

f |

is the effective number of constraints (each corner match provides two constraints, while each

face point match provides one), and the term2nl/(n− l− 1) adjusts for small-sample bias [10,

p. 51].

Expression (5) is evaluated for each candidate model using a fixed set of matches found using

the transformation estimate of the best model from the previous Dual-Bootstrap iteration. The

final objective function value of (2) (after IRLS converges) is used for each model to evaluate

expression (5). The model that minimizes (5) is chosen as the current model and its estimated

parameters become the current parameters. Model selection is turned off once the selection

procedure reaches the highest-order model.

E. Region Growth

Region growth, illustrated in Figure 2, is based on the uncertainty in the transformation

estimate, represented by the covariance matrixΣ̂θpq . Expansion of the axis-aligned rectangle

representing the current bootstrap region is inversely proportional to the transfer error — the

error in applying the estimated transformation to points on the boundary of the bootstrap region.

The following is a summary of the details of this procedure taken from [48]. Subsequently, a

simple modification is given to make the algorithm more effective in registering image pairs

with large scale variations.

Let the center of the bootstrap region bey0, let a point location centered on one of the four

sides of the region bey, and letηy = (y−y0)/‖y−y0‖ be the outward-pointing normal to the

rectangle. The mapping error covariance at the mapped pointy′ = T(y; θ̂
pq

) is computed from

the Jacobian of the mapping,Jy = ∂T(x; θ)/∂θ evaluated atx = y andθ = θ̂
pq

, together with

the covariance of the transformation parameters:

Σy′ = JyΣ̂θpqJ>y . (6)
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The outward growth rate is inversely proportional to the error variance in the mapped outward

normal direction,ηy′,

δy = β
(y − y0)

>ηy

max(1, ηy′Σy′ηy′)
,

whereβ = 2.0 is a fixed constant. The new center of the side is given byŷ = y0+(1+δy)(y−y0).

The new region is obtained after all the side centers are updated with the above method.

The extension made here is to form and grow bootstrap regions independently in each image,

Ip andIq. Each of the two initial regions is determined from the corresponding keypoint locations

and scales, as described in Section II. The above procedure is applied separately for the two

regions at each Dual Bootstrap iteration separately. These regions are implicitly kept relatively

consistent through the use of bi-directional matching, which keeps the transformations close

to being inverses of each other and the covariance matrices commensurate with each other.

Keeping separate regions in the two images is important for handling large scale differences

between images.

V. DECISION CRITERIA

Once the GDB-ICP refinement procedure just described expands to cover the apparent overlap

between images (based on the estimated transformation) and the refinement process has con-

verged, the final alignment is tested for correctness. If this confirms that the transformation is

correct, the images are considered to be aligned, and the algorithm stops. Otherwise, GDB-ICP

is restarted on the next keypoint match.

Three tests — accuracy, stability and consistency — form the decision criteria. The tests are

applied in each direction using the final match sets. A transformation that passes all three tests

in both directions is accepted as correct.

Accuracy is measured as the weighted average errorζe(θ̂, Cf ), computed on the final face

matches,Cf . Face points are used because their positions (along the normal direction) are more

accurate than corner points. Using the measures introduced above, accuracy is

ζe(θ̂
pq

, Cf ) =
( ∑

(pi,qi)∈Cf

wf,iwd,idf (pi,qi; θ̂
pq

))
)/( ∑

(pi,qi)∈Cf

wf,iwd,i

)
. (7)

Stability is measured by the error covariance — the mapping transfer error introduced in the

context of region growth in Section IV-E. To check this, points are uniformly sampled in the
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(a) correct alignment (b) incorrect alignment

Fig. 8

EXAMPLE HISTOGRAMS OF THE ORIENTATION DIFFERENCE OF A SET OF FACE POINT MATCHES FROM CORRECT(A) AND

INCORRECT(B) ALIGNMENTS USING THE SUMMER-WINTER PAIR.

overlap area between aligned images. For each sample pointyi, the mapping error covarianceΣy′
i

is computed from (6). The overall measure isζt(θ̂, Σ̂θ) = maxi trace(Σy′
i
). This is particular

effective at avoiding incorrect low-overlap transformations.

The consistency measure is derived from the orientation differences of the face point match

set Cf after the application of the transformation estimateθ̂. These differences, measured in

absolute angle difference, are put into a histogramh(θ̂, Cf ) of the range[0, π/2]. (Absolute

angle differences greater thanπ/2 are subtracted fromπ, effectively accommodating intensity

reversals.) If the transformation is incorrect, this angle difference will tend toward being uni-

formly distributed, whereas if the images are well-aligned, the histogram will tend to have a

strong peak near 0 degrees (Figure 8). The consistency measure is based on the Bhattacharyya

measure against an exponential distribution. The probability density function of an exponential

distribution isf(x; λ) = λe−λx for x ≥ 0. We useλ = 4.7, which dictates 70% of the face point

matches have orientation differences no greater than 10 degrees. This exponential distribution,

denoted ase, is represented as a second histogram. Then the consistency measureζc(θ̂, Cf ) is

ζc(θ̂, Cf ) = 1−
∑

i

√
hi(θ̂

pq
, Cf )ei (8)

wherei indexes the histogram bins.

To make a decision with these measures —ζe, ζt and ζc — lower and upper thresholds are

introduced for each:ZL
e ≤ ZH

e for ζe, ZL
t ≤ ZH

t for ζt, andZL
c ≤ ZH

c for ζc. Whenζe ≤ ZL
e ,

ζt ≤ ZL
t and ζc ≤ ZL

c , the transformation estimate is accepted as correct. Whenζe > ZH
e ,

ζt > ZH
t or ζc > ZH

c , the transformation is rejected. Otherwise, the transformation is saved. If
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all initial transformations have been tested and none have been accepted, the saved transformation

with the minimum value of alignment errorζe is accepted. If there are no saved transformations,

the algorithm rejects the image pair, indicating that it can not be aligned. Transformations tend

to fall into the “saved” category for image pairs that involve significant changes or that can not

be precisely aligned using the final transformation model.

These thresholds are fixed atZL
e = 1, ZH

e = 2, ZL
t = 0.3, ZH

t = 1, ZL
c = 0.09, and

ZH
c = 0.2 for all experiments here. For efficiency, the algorithm also applies a set of higher

thresholds, starting after the third Dual Bootstrap iteration when the estimate has begun to

stabilize, to identify and terminate estimates that are clearly wrong. We refer to this step as the

early termination criteria.

VI. EXPERIMENTS

This section presents experiments designed to illustrate the overall performance of GDB-ICP

(Section VI-B), compare it to minimal-subset random sampling methods (Section VI-C), and

analyze in detail the most important aspects of the algorithm. The focus of the latter is on the

success of growth and refinement (Section VI-D), the choices of features and matching criteria

(Section VI-E), and the effectiveness of the final decision criteria (Section VI-F) — the newest

aspects of the algorithm. See [48] for analysis that shows the significance of the Dual-Bootstrap

refinement, growth and model selection procedures in the context of retinal image registration.

A. Data Set

All experiments use the data set of 22 image pairs discussed in the introduction. This set was

constructed from our own digital photographs, from pairs found on the web, and from challenging

pairs suggested by colleagues. Many easier pairs have been left out in order to keep the tests

manageable. As an example of this, we included one pair, with 2% overlap (the “Dashpoint” pair

here), from the test suite of [8] (GDB-ICP registers all overlapping pairs from this suite). On

the other hand, some types of pairs, such as PET-CT images, which have no common geometric

structure, have been purposely left out. We discuss this more in Section VII. The results are

clearly conditioned on the data set, but the range of challenging pairs shown should be suggestive

of the broad effectiveness of our algorithm. In order to allow the community to test GDB-ICP
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beyond the experiments presented here, an executable version of the software has been posted

on the web.

The images range in size from676 × 280 to 2500 × 2500. Image pairs overlap as little as

2%, differ in scale by a factor as high as 6.4, and differ in orientation by as much as 90

degrees. Five pairs are multi-modal (retina angiogram vs. red-free photograph, two infrared vs.

video airport scenes, pan-chromatic and infrared satellite images, and proton density vs. T1

weighted brain MRI slices). Four pairs involve substantial illumination changes and two other

pairs are of different seasons. The selection of scenes includes aerial, urban, landscape, indoor,

and medical. On the Melanoma and EO-IR 1 pairs, the intensity of one image is negated before

keypoint generation since SIFT is not invariant to intensity reversal. Finally, the retinal images

involve quadratic transformations, whereas the others involve the use of the homography or the

homography plus radial lens distortion (HRD) models. The choice of final model is specified by

a command-line argument. All other parameter settings are fixed for these experiments.

B. Overall Results

GDB-ICP successfully aligned 19 of all 22 image pairs in our data set with alignment error less

than a pixel. Success is defined here as no visible misalignments between homologous structures

following application of the transformation, as judged independently by a graduate student who

is not one of the authors. The successful transformations, one for each pair, are labeled as

“verified” transformations to be used in subsequent experiments. Example alignments are shown

in Figure 10; complete results are posted at our web site, including animations. Interestingly, for

pairs “Brugge”, “Brugge Square” and “Brussels”, the 10 degree-of-freedom “Homography plus

Radial lens Distortion” (HRD) model eliminated small, but visible misalignments produced by

using only a homography (see Figure 9 for details).

Table II shows, for each pair, the index number of the first keypoint match in the rank ordering

for which the algorithm succeeded, the index of the same successful keypoint match among

only those consistent with the verified transformation, the final alignment error, and the chosen

transformation model. A consistent keypoint match is somewhat arbitrarily defined to have a

location error of less than 6 pixels, a scale ratio within the interval 0.8 to 1.25 (one step in scale

space), and an orientation difference of 15 degrees, all computed following application of the

verified transformation. Intuitively, these are matches that appear to be geometrically close to
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(a) checker mosaic (b)Homography (c) HRD model

Fig. 9

(A) SHOWS A CHECKER MOSAIC OF THEBRUGGESQUARE PAIR USING THE HOMOGRAPHY MODEL, IN WHICH THERE ARE

PLACES, NOTABLY INSIDE THE BOXES, THAT HAVE MISALIGNMENTS . COLUMN (B) SHOWS ZOOM-IN OF THE BOXES.

COLUMN (C) SHOWS THE SAME AREA AFTER USING THEHOMOGRAPHY WITH RADIAL LENS DISTORTION (HRD) MODEL.

THE WINDOW FRAMES AND LETTERS ARE NOW WELL ALIGNED.

correct. The remaining keypoint matches are labeled “inconsistent”. As can be seen from the

table, in most cases a consistent match appears among the first five in the rank ordering and in 15

cases GDB-ICP successfully refined this initial transformation to a verified final transformation.

GDB-ICP failed for three pairs. In each case, manual specification of three initial correspon-

dences in a small initial region and computation of an initial estimate of an affine transformation,

followed by application of the Dual-Bootstrap growth and refinement procedure led to a verified

transformation. This indicates that the failures are caused by keypoint detection and matching, by

keypoint-based initialization, or by the early stages in the Dual-Bootstrap growth and refinement

procedures. In one case in particular — Capital Region — the projective distortions are too

severe be handled starting from a local similarity transformation.

Image sizes and timing results are summarized in Table I. Clearly algorithm speed is mostly

affected by image size and matching difficulty. The failures and the image pairs which require

testing of all 50 keypoint matches (because no match provided results below the lower decision

thresholds) are the only ones other than the huge “Satellite” pair requiring more than a minute.

C. Comparison to Keypoint Matching Algorithms

As one indication of the significance of these results, the publicly-available code for the

Autostitch keypoint matching algorithm [7] (with default parameters) produced five alignments
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On the successful keypoint match Grand Total

Image Pair Name
Image

Dimension

# of

Iterations

Time in sec. # of Keypoint

matches tried

Time

in sec.

Boston 1712×1368 14 12 1 12

Boston Library 1504×1000 13 6.5 1 6.5

Brain T1 to PD 512×512 12 2.0 5 8

Brugge Square 1712×1368 17 58 1 58

Brugge Tower 1712×1368 20 28 1 28

Brussels 1712×1368 17 31 1 31

Capital Region 1712×1368 NA NA 50 1225

Day-Night 1000×1504 24 30 2 43

Dashpoint 2048×1536 12 10 1 10

Eiffel 1712×1368 16 22 1 22

EO- IR 1 300×236 15 6.8 50 107

EO- IR 2 676×280 NA NA 50 51

Extreme Zoom 1504×1000 25 34 50 761

Grand Canyon 1 1184×780 15 11 1 11

Grand Canyon 2 900×568 16 26 50 592

Melanoma 1156×880 14 13 50 126

Retina 1600×1200 17 9.9 5 23

Satellite 2878×2878 18 67 1 67

Whiteboard 1504×1000 19 12 1 12

White Tower 1504×1000 18 21 2 56

Winter-Summer 1504×1000 19 37 2 51

Winter Day- 1504×1000 NA NA 50 300

Summer Night

TABLE I

TIMING RESULTS IN SECONDS. THE FIRST TWO COLUMNS ARE THE IMAGE-PAIR NAME AND THE DIMENSION OF THE

LARGER IMAGE. THE NEXT TWO COLUMNS ARE THE NUMBER OF ITERATIONS AND THE TIME THAT THEDUAL BOOTSTRAP

GROWTH-AND-REFINEMENT PROCEDURE SPENT ON THE KEYPOINT MATCH THAT LED TO THE SUCCESSFUL ALIGNMENT.

THE LAST TWO COLUMNS ARE THE TOTAL NUMBER OF KEYPOINT MATCHES TRIED AND THE TOTAL TIME USED BEFORE

GDB-ICP TERMINATES. THE PERFORMANCE IS MEASURED ON APENTIUM 4 3.2GHZ PC WITH 2GB MEMORY.
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White Tower Winter-Summer Day (cropped) Extreme Zoom (ratio 6.4, cropped)

Brugge Square (cropped) Day-Night Summer Dashpoint(overlap 2%, cropped)

Melanoma (cropped) Retina (cropped) Brain PD-T1

Fig. 10

FINAL ALIGNMENT CHECKERBOARD IMAGES
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(“Boston”, “Boston Library”, “Eiffel”, “Brugge Square”, and “Brussels”). The latter three have

visible misalignments, partly due to the fact that the homography is insufficient for these pairs.

On the other 17 pairs Autostitch failed altogether. We obtained slightly better results with our

own implementation using RANSAC and other random-sampling-based algorithms [39], [51],

registering Grand Canyon 1 and White board pairs. The failures are due to both the small number

and the small fraction of consistent keypoint matches, as shown in the last three columns of

Table II.

D. Success of the Growth and Refinement Procedure

The following experiment shows the effectiveness of starting from individual keypoint matches

rather than combining them, as in a random-sampling approach. We use the top 50 keypoint

matches of the 19 pairs that GDB-ICP aligned. The GDB-ICP estimation process is applied to

each of these keypoint matches, without any decision criteria. The resulting “test” transformation

estimate is then compared to the verified transformation. Those that agree to within an average

distance of less than 2 pixels in the overlap region between images are considered correct.

Among the 19 pairs of images, there are 781 keypoint matches in total (some pairs have

fewer than 50 matches), 489 are “consistent” and 292 “inconsistent”. Among the 489 consistent

ones, 397 led to correct final transformations, while 21 of 292 labeled “inconsistent” led to

correct final transformations, resulting in a total of 418 correct alignments. Examination of the

21 shows that the estimation procedure recovered from initial location errors as high as 12 pixels

and orientation differences as much as 18 degrees.

To interpret the significance of these results, based on a probability ofPa = 397/489 ≈ 0.81

of succeeding from a consistent keypoint match, the overall probability of GDB-ICP producing

a correct alignment givenn consistent matches is1 − (1 − Pa)
n, which is 99.3% when there

are justn = 3 consistent matches. By contrast, minimal subset random sampling techniques

require 4 matches just to instantiate a transformation. Clearly GDB-ICP can succeed despite an

extremely small number of keypoint matches.

E. Choice of Features and Matching

The next set of experiments evaluates several variations on the choice of features, the scale of

the features, and the directionality of matching. This is important to show the influence of these
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With GDB-ICP keypoint statistics

Image pair name

1st success

in all

keypoint

matches

1st success in

only the

consistent

matches

Final al-

ingment

error

Final

model

Total #

keypoint

matches

position

consistent

within 6

pixels

ratio

Boston 1 1 0.36 HRD 641 492 76%

Boston Library 1 1 0.32 HRD 334 144 35%

Brain T1 to PD 5 1 0.98 H 18 9 50%

Brugge Square 1 1 0.43 HRD 421 272 65%

Brugge Tower 1 1 0.49 HRD 558 369 66%

Brussels 1 1 0.35 HRD 1435 1180 82%

Capital Region NA NA NA HRD 142 6 4%

Day-Night (Summer) 2 1 0.62 HRD 99 30 30%

Dashpoint 1 1 0.30 HRD 54 17 31%

Eiffel 1 1 0.30 HRD 456 216 47%

EO - IR 1 3 2 1.59 HRD 13 4 31%

EO - IR 2 NA NA NA H 5 0 0%

Extreme zoom 1 1 0.33 HRD 181 41 23%

Grand Canyon 1 1 1 0.88 HRD 52 45 86%

Grand Canyon 2 1 1 1.20 HRD 26 12 46%

Melanoma 7 1 1.88 Q 12 3 25%

Retina 5 01 0.58 Q 27 12 44%

Satellite 1 1 0.26 HRD 145 83 57%

White board 1 1 0.20 HRD 173 95 55%

White Tower 2 2 1.14 HRD 35 6 17%

Winter-Summer (Day) 2 1 0.60 HRD 95 21 22%

Winter Day- NA NA NA HRD NA NA NA

Summer Night

TABLE II

SUMMARY STATISTICS ON ALL PAIRS FROM OUR DATA SET. THE 2ND TO 5TH COLUMNS SHOW THE PERFORMANCE OF

GDB-ICP: THE INDEX (STARTING FROM1) OF THE FIRST SUCCESSFUL KEYPOINT MATCH IN THE RANK-ORDERED LIST,

THE INDEX OF THE SAME SUCCESSFUL KEYPOINT MATCH AMONG ONLY THECONSISTENT KEYPOINT MATCHES , THE

FINAL ALIGNMENT ERROR, AND THE CHOICE OF FINAL TRANSFORMATION MODEL— HOMOGRAPHY (H), HOMOGRAPHY

WITH RADIAL LENS DISTORTION (HRD), AND QUADRATIC (Q). THE LAST THREE COLUMNS SHOW KEYPOINT STATISTICS

WHICH HELP TO EXPLAIN WHY RANSAC-BASED ALGORITHMS ARE LESS SUCCESSFUL: THE TOTAL NUMBER OF KEYPOINT

MATCHES (LOWE’ S SIMILARITY RATIO < 0.8), THE NUMBER WHOSE POSITIONS ARE WITHIN6.0 PIXELS FOLLOWING

APPLICATION OF THE VERIFIED TRANSFORMATION, AND THE RATIO BETWEEN THE TWO. 1ON THE “RETINA” PAIR,

GDB-ICP SUCCEEDED ON AN“ INCONSISTENT” KEYPOINT MATCH — ONE WITH 8.0 PIXELS OF POSITION ERROR.
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design decisions on the performance of the overall algorithm. These experiments show that face

points and bidirectional matching are important and indispensable.

Just as in the previous test, we evaluate all 50 keypoint matches from the 19 pairs GDB-ICP

succeeds upon. We study the change in the aforementioned 418 successes with changes in the

feature extraction and matching. We also determine whether one of these changes causes the

entire GDB-ICP to fail on a pair on which it originally succeeded.

The tests are summarized in Table III, which shows several important results. First, using

corner points alone without face points results in a 39% drop in the number of successful initial

keypoint matches, and a loss of 8 successful pairs. Apparently, corners are not widely-enough

and densely-enough distributed for GDB-ICP to succeed consistently on our challenging data

set. Using faces alone, the drop is only 4%, and no pairs are lost.

Interestingly, using forward matching alone instead of bidirectional matching causes the loss

of 15% of the successful keypoint initializations and two of the most difficult pairs — EO-IR 1

and Melanoma. In a related result, not shown in Table III, the percentage of driving features that

are mapped to within 2 standard deviations of their corresponding matchable features, thereby

creating “inlier” correspondences, ranges from 58% to 83%. This indirectly justifies (a) the

ability of GDB-ICP to adapt to substantial differences between images and (b) the decision to

push feature extraction toward covering as much of an image as possible, trusting the rest of the

algorithm to automatically determine which features are consistent between images.

The final test, shown on the right in Table III, explores multiscale feature extraction. Using

scale 1.0 (standard deviation of Gaussian smoothing) results in a loss of 5% initializations,

and three image-pairs — EO-IR 1, Melanoma, and Grand Canyon 2. When the single scale at

which the features are extracted is increased, the success rate drops slowly. Finally, when using

features combined across scales, similar to the scale-space detection technique of many keypoint

matching algorithms [30], [36], there is a 7% drop in the number of successful initializations,

but no loss of any pairs.

F. Decision Criteria

To analyze the strength of the three-component decision criteria, we compared them with

simplified versions. The results show that all three components of the decision criteria are

necessary, that bi-directional decision increases robustness, and that the complete decision criteria
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succ. succ. succ. succ.

variations init. pairs variations init. pairs

corners and faces 418 19 forward matching 356 17

corners only 256 11 scale 1.0 397 16

faces only 401 19 scale 1.4 404 15

driving only 415 17 scale 2.0 362 14

matchable only 402 19 combined across scales 390 19

TABLE III

GDB-ICP SUCCESS NUMBERS BASED ON VARYING THE FEATURE SET AND THE MATCHING. THE 2ND COLUMN IS THE

NUMBER OF INITIALIZATIONS (KEYPOINT MATCHES) THAT LED TO SUCCESSFUL ALIGNMENTS, WHILE THE 3RD COLUMN IS

THE PAIRS FOR WHICH AT LEAST ONE INITIALIZATION SUCCEEDED.

are effective in distinguishing correct alignments from incorrect ones, even in the presence of

low overlap, scale differences and physical changes.

One of the simplified versions is the use of alignment error alone, a natural measure for

registration based on geometric constraints, and the one used in [11], [48] for retinal image

registration. We then considered the importance of the three criteria by leaving each out in

turn. Finally, we considered the effect of several other aspects of the decision criteria. In these

experiments, all42 · 41 = 1722 possible ordered pairs of images are used, with both orderings

used for each pair because each can produce different initial keypoint matches (see Section II

for details), and therefore different initializations. The final model is always the homography

(for speed considerations). Alignments passed by the modified decision criteria were examined

by a graduate student (not one of the authors) to determine correctness. This turned out to be

crucial because this test discovered some small overlaps in our image set that we did not realize

existed. Based on this human judgment and based on our verified results, the decisions made

by GDB-ICP under various decision criteria could be classified as True Positives (TP), False

Positives (FP), True Negatives (TN) and False Negatives (FN). No changes were made in the

parameter values of the decision criteria throughout the experiment.

The results are summarized in Table IV. The first observation concerns the effectiveness of

the full decision criteria. The six false negatives come from the three pairs which GDB-ICP

known to fail on. The three false positives are image pairs that appeared locally consistent, with
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one of the regions having very low contrast. On the other hand, most such pairs are rejected.

In fact, 99.8% of the incorrect pairs are rejected. Stated even more strongly, among the 1671

rejected pairs there are1671 × 50 = 83, 550 incorrect initializations, including many with low

overlap, all of which are rejected.

TP TN FP FN

Full 42 1671 3 6

Accuracy alone 41 1515 158 8

No Stability 42 1614 60 6

No Orientation 42 1646 28 6

No Accuracy 42 1638 36 6

Only forward 42 1641 33 6

TABLE IV

EFFECTS OF VARYING THE DECISION CRITERIA WHEN APPLYINGGDB-ICP TO ALL POSSIBLE PAIRS. TP STANDS FORTRUE

POSITIVES, TN FOR TRUE NEGATIVES, FPFOR FALSE POSITIVES, AND FN FOR FALSE NEGATIVES. SEE TEXT IN

SECTION VI-F FOR DETAILS.

As seen in the next four rows of the table, when using only part of the criteria, the number of

false positives increases significantly — jumping to 158 for use of the accuracy measure only,

but with fewer when two of the three measures are used. These false positives are due to locally-

consistent structures, especially near image boundaries (producing apparent low-overlap between

images). These experiments show convincingly that all three decision criteria are important.

Finally, when the decision criteria are applied only in the forward direction — from the moving

image to the fixed image — the false positive rate increases substantially.

VII. D ISCUSSION

The experiments on our challenging data set have demonstrated that GDB-ICP is a powerful

registration algorithm, capable of aligning a wide variety of image pairs. Overall, our experience

with this data set and with other pairs shows that GDB-ICP succeeds when keypoint matching

produces a small number of consistent matches, when there is sufficient common structure

between the images to drive the dual-bootstrap process and the decision criteria, and when

the similarity transformation is a reasonable initial model. In this section, we examine this

success, using the experiments to show how the design of the algorithm allows it to handle the
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image registration challenges outlined in the introduction. We also discuss some limitations of

the algorithm. We conclude this section by re-examining several individual components of the

algorithm.

Our experiments have shown that GDB-ICP can succeed with as few as one consistent keypoint

match and with as little as 58% correct matches between the driving features of one image and the

matchable features of the other. Remembering that matchable features must pass less-stringent

tests than driving features and recalling that contrast reversals are ignored by the matching

process, this result explains why the algorithm does so well with substantial changes in image

illumination and structure, and even changes in modality. The tolerance for differences in feature

extraction and matching is allowed in the algorithm because the decision criteria can be trusted

to reject nearly all incorrect alignments. The effectiveness of the decision criteria is also crucial

to the algorithm’s success in handling low-overlap pairs. Using the criteria, GDB-ICP accepts a

small number of correct, low-overlap alignments while rejecting the extremely large number of

low-overlap alignments generated by incorrect keypoint matches. Finally, the ability to generate

matches across scales is crucial to handling substantial differences in scale2. While another recent

algorithm has shown the ability to handle large scale variations [15], it has not be demonstrated

in as challenging a context as our data set.

Despite the demonstrated success, GDB-ICP does have limitations:

• It cannot handle extreme appearance differences between image pairs. In our data set this is

mostly due to initial keypoint matching, but we anticipate that the algorithm will fail on other

multimodal pairs such as PET-CT pairs, where it is unlikely that the features will capture

enough structural similarity. Still, GDB-ICP did succeed on all but one of the multimodal

pairs in our data set, because multimodal images often do have sufficient common structure.

Intuitively, the structural and textural differences between the color image and the fluorescein

angiogram in the “Melanoma” pair put it near the limit of what GDB-ICP can handle.

• Currently, the decision criteria do not eliminate incorrect alignments of an image-wide

repetitive structure such as a checkerboard. On the other hand if only a moderate fraction

of a scene involves repetitive structure, the decision criteria make the right decision: although

incorrect alignments in the repetitive region will appear accurate, these produce inconsistent

2After these tests were completed we tested a pair with a zoom factor of 9.5 and GDB-ICP succeeded.
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matches image-wide. An example of this occurs in the “Brussels” pair of our data set.

• As a 2d registration algorithm, GDB-ICP currently only tolerates a small amount of parallax.

In a similar vein, it is currently limited to global transformation models.

• There is no convergence proof in the overall algorithm, just as there is no convergence

proof in the ICP using anything but Euclidean match distances. In practice, however, on

thousands of tests, GDB-ICP has always converged. One reason for this is that both region

growth and model selection are monotonic.

• Finally, GDB-ICP, while consistently running in less than a minute for two mega-pixel

image pairs, is still somewhat slow.

All of these issues are topics of our ongoing work.

Finally, we make a few observations about the individual components of GDB-ICP:

• The experiments show the importance of using multiscale face point (edge-like) features

during the alignment process instead of more sparse features such as corners, even when

corners are detected at multiple scales.

• While it is straight-forward to replace Lowe’s LoG keypoint detector and SIFT descriptor

[31] with other current keypoint techniques [37], [38], it would be surprising if this would

improve keypoint matching substantially on our data set. Still, a thorough exploration of

this question is worthy of future study.

• As shown in our earlier work [48] and reinforced by our results here, the combination of

re-estimation and model selection in the bootstrap region keeps the estimate close to the

local minimum while gradually increasing the problem complexity through region growth.

This allows a technique as simple and efficient as our robust version of ICP to succeed as

the core refinement procedure on the vast majority of the initializations. More sophisticated

procedures, such as EM-ICP and RPM [14], [21], which simultaneously consider multiple

per feature matches during registration, might be considered in place of ICP. In the context

of the Dual-Bootstrap approach, however, our informal experiments with the central idea of

these methods — multiple matches per feature — showed that because of the large number

of outliers, even in the bootstrap regions, refinement must heavily rely on the distance to

the nearest matching feature. These observations pushed us back toward robust ICP instead

of EM-ICP or RPM. Still, a definitive answer to the question of the optimal core refinement
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procedure working within the context of the overall Dual-Bootstrap algorithm is beyond the

scope of this paper.

• The axis-aligned, rectangular shape of the region is a simple, efficient representation. The

new use of two independent regions introduced here is important for handling large dif-

ferences in scale. Region models more sophisticated than our rectangular model could be

developed — e.g. ones encompassing only the points where the trace of the transfer error

covariance matrix is below a threshold — but the rectangular shape has proven sufficient for

all our experiments and has not been the cause of an algorithm failure. Note that other region

growth techniques have recently been proposed in the literature [17], [47]. Ours differs in

that its growth is monotonic and is controlled by the uncertainty in the transformation

estimate.

• The three-part decision criteria have proven to be essential for handling the challenging

image pairs studied here. Other techniques include Brown and Lowe’s combinatorial analysis

of keypoint matches [7] and Belongie’s use of distance, brightness variation and bending

energy for recognition [3]. Clearly, keypoint-based measures alone are insufficient. Measures

based on intensity variation or gradient magnitude differences [45] are not appropriate for

the range of appearance variation seen here. Finally, although our three-part criteria have

proven highly successful, they are not perfect and further improvements are possible.

VIII. S UMMARY AND CONCLUSION

This paper has presented the fully-automatic Generalized Dual-Bootstrap ICP (GDB-ICP)

image registration algorithm designed to handle a wide variety of image pairs, including those

showing scale changes, orientation differences, low overlap, illumination differences, physical

changes and different modalities. Building extensively on existing work, the algorithm is in fact

a series of algorithms designed to work together to solve the problem. Extensive experiments on

a 22 image-pair data set representative of these challenges have shown the effectiveness of the

design and demonstrated that a broadly-applicable, fully-automatic image registration is possible.

The experiments have also highlighted areas of potential improvement. The most important of

these is initialization, especially when there are large appearance variations between images,

caused by physical or illumination changes or differences in image modalities. Despite this, the

experiments reported here and experience by both our group and others who have tested the
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GDB-ICP executable demonstrate that it is effective enough for widespread use.
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